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Bringing Variety of ML Approaches to
Bear on Adverse Drug Events

Regularized Regression
Random Forests
Support Vector Machines

Graphical Model Learning (Bayes nets, Markov
nets, dynamic Bayes nets, continuous-time
models)

Deep Learning (deep neural nets, restricted
Boltzman machines)

Relational Learning



Data: EHR or Claims Data in a
Relational Data Warehouse

N
((\O%(")Q PatientID| Gender Birthdate
o¢ P1 M 3/22/1963
Patient ID Date Physician Symptoms Diagnosis
(\0‘966 P1 1/1/2001 Smith palpitations  hypoglycemic
% P1 2/1/2001 Jones fever, aches influenza
Patient ID Date Lab Test Result
X P1 1/1/2001 blood glucose 42
S
\,Ab%e P1 1/9/2001  blood glucose 45
Patient ID Date Observation Result
P1 1/1/2001 Height 5'11
KRG P2 1/9/2001 BMI 34.5
. Date
5P o™ | patientID | Prescribed Date Filled Physician Medication Dose Duration
We P1 5/17/1998 5/18/1998 Jones Prilosec 10mg 3 months




Alternative View of Patient Data:
Irregularly-Sampled Time Series
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But Most ML Algorithms Expect:

* Single Table (Spreadsheet), or
* Regularly-Sampled Time Series

* Another Challenge: ML Algorithms aim for
accurate prediction, not causal discovery



High-Throughput ML (Kleiman, Bennett, et al., 2016)
Predicting Every ICD Diagnosis Code at the Press of a Button
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Spectrum of Approaches to Causal
Discovery from Observational Data

and effect are only

Hypothesized cause
variables known

All the relevant
variables known,
but not structure

N

Self-controlled

etc.

Disproportionality,

case series (SCCS),

Robbins et al.,
Pearl et al.,
Granger graphica
models, DBNs,
PC Algorithm




Spectrum of Approaches to Causal
Discovery from Observational Data

All the relevant
variables known,
but not structure

Hypothesized cause  Hypothesized cause
OR effect IS only and effect are only
variable known variables known

N\

Disproportionality, .
Madigan et al. Self-controlled Robbins et al.,
extensions to case series (SCCS), Pearl et aI.,-
SCCS, other etc. Granger graphical

models, DBNs,
PC Algorithm

extensions next...




Extending SCCS to Numerical Response (Kuang et al.)

Electronic Health Records (EHRS)
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A Critical Intuition: Underlying Baseline
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*
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Bleedin
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Baseline: Blood sugar level under no influence of any drugs.



Fixed Effect Model

Person 1
#Diabetes F
I I Insulin I Insulin T T
30 1S 2 AAge

e Fixed Effect Model (Frees, 2004):

T s
yilXj =ai+p x;+ e, eij ~ N(0,02).

e dimpB =# drugs




Time-Varying Baseline
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A
i
s Diabetes
T I _Insulin Insulin
| Age
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5 Time-Varying Baseline, add regularization to minimize change
in proximal, consecutive {; values:

. T
yi | Xij =t; + B x; + €, eij ~ N(0,02).




Time-Varying Baseline
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5 Time-Varying Baseline: add regularization to minimize change
in proximal, consecutive {; values:

T an
Yi | Xj =4+ B Xjj + €, eij ~ N(0,02).
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More Ground Truth Available for Glucose Lowering
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Figure: Left: Precision at K among the top-forty drugs generated by the four
models; Right: Partial AUCs on the top-forty drugs generated by the four models.

e Sample size: 219306.
@ Number of drug candidates: 2980.




Recovery of Known Glucose Lowering Agents
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Real Situation: Know the Drug but
Don’t Know the Effect of Interest

» Response or candidate conditions must be
pre-specified (though might be many)

« No consideration of context— ADE might
only arise when patient

— is taking another drug (drug interaction)

— has specific properties, such as low weight or
specific genetic variation



Most Current Approaches

Warfarin

Heart Attack

Cox2 inhibitor

Angioedema

ACE inhibitor

Bleeding




What We Would Like:

Cox2 inhibitor(P,D) —> hypertension(P)

Warfarin

older(P,55) , vioxx(D)

Coxz inhibitor P;lliullll)j(icmicr Birthdate PatientlD| Date | Physician| Symptoms | Diagnosis

Pl M 3/22/63 Pl 1/1/01| Smith |palpitations| hypoglycemic
Pl 2/1/03| Jones |fever, aches|influenza
| N N |
PatientID| Date Lab Test Result PatientID| SNP1 |SNP2 | ... [SNP IM
Pl 1/1/01 |blood glucose 42 P1 AA | AB BB
P] ] 9 “l h](‘t\d glllC(‘NC -1< P’\ \B B” \\
ACE inhibitor

PatientID | Date Prescribed | Date Filled | Physician | Medication | Dose | Duration

Pl 5/17/98 5/18/98 Jones prilosec | 10mg| 3 months

EMR



Reverse Machine Learning

« We already know who is on drug, and we want to
find the condition it causes

« But we don’ t know which condition

— Might not even have predicate for condition in our
vocabulary

— Assume only that we can build condition definition
from vocabulary as a clause body

« Treat drug use as target concept, and learn to
predict that based on events after drug initiation



Use Rule Learning (ILP)

« If antibiotics(P) and bleeding(P) then
warfarin(P)

- If age_at _least(R55) and hypertension(P)
then vioxx(P)



Using ML to Find Subgroups of
Patients on Drug Based on
Common Events Afterward

Rule consequent specifies drug and rule
antecedent specifies ADE

Reverse of what we normally expect
Richer condition definitions

Can identify events that don't
correspond neatly to single condition

Can identify drug interactions



SCCS-Like Scoring of Models

 Search for events that occur more
frequently after drug initiation than before

« Example scoring function:
P(t. >t | c,d)
 Could normalize, dividing by:
P(t- >t | C,d) P(t. >ty | ¢,D)



Temporal filtering and Scoring Functions

Dx Med Med
Med s : Dx Tx 4
DX Lab ymp om CenSOI' Dx Lab Lab ymptom
Symptom DX LabTx Dx Date Dx Dx
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CASE,,,.. — CASE

Before

where now a CASE is person on drug
(rather than person experiencing event)



Results

Rules for Cox2(A) :- Pos Neg Total P-value
diagnoses(A,_,'790.29','Abnormal Glucose Test, Other Abn Glucose',_). 333 137 470 6.80E-20
diagnoses(A,_,'V54.89','Other Orthopedic Aftercare’, ). 403 189 592 8.59E-19
diagnoses(A,_,'V58.76",'Aftcare Foll Surg Of The Genitourinary Sys', ). 287 129 416 6.58E-15
diagnoses(A,_,'V06.1','Diphtheria-Tetanus-Pertussis,Comb(Dtp)(Dtap)’, ).211 82 293 2.88E-14
diagnoses(A,_,'959.19",'Other Injury Of Other Sites Of Trunk ’,_). 212 89 301 9.86E-13
diagnoses(A,_,'959.11','Other Injury Of Chest Wall',_). 195 81 276 5.17E-12
diagnoses(A,_,'V58.75','Aftcar Foll Surg Of Teeth, Oral Cav, Dig Sys', ). 236 115 351 9.88E-11
diagnoses(A,_,'V58.72','Aftercare Following Surgery Nervous Syst, Nec',_)222 106 328 1.40E-10
diagnoses(A,_,'410','Myocardial Infarction’, ). 212 100 312 2.13E-10
diagnoses(A,_,'790.21",'Impaired Fasting Glucose ', ). 182 80 262 2.62E-10

Test Summary Statistics
Rule + -
- 838 333 1171
- 987 1492 | 2479
1825 1825 3650
Accuracy = 0.638
Testset Recall/Precision/F1/Dsq2best = 0.459 0.716 0.559 0.373
Testset ROC_x/ROC_y/Dsqg2best = 0.182 0.459 0.326

* Using only diagnoses =2 Accuracy = 0.63

* Using diagnoses, medications, labs =

Accuracy =0.78

24



Reverse Learning for Generics

- Can we detect who on Generic Gabapentin?
e - Each Patient is two examples
e - Confounders:

— Most patients were switched to generic 2005

— Marshfield policy changes also in 2005
— Made unrelated changes to reporting system



Recent Work on Generic vs. Brand Comparison

Dx Med Med
Med S i Dx Tx
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Symptom DX LabTx Dx Date Dx Dx
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Before

where Censor Date is 2005 (time CASEs were
switched from brand to generic)



Biggest Challenges Now

 Temporal confounding: adding controls (people
not on drug) removed obvious ones

— Prescription transmitted electronically
— |CD code “other non-operative exam”

 But what about newer results such as
hyperlipidemia, lidoderm, or levoquin?

e Evaluation: Few known cases of generic vs. brand
differences for rediscovery evaluations



Cases and controls
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Scoring: Informative Rule
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Scoring: Less Informative
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Scoring: Informative?




Future Work

* Further addressing confounding, temporal and
otherwise

* One approach: Incorporating learned rules as
nodes in a graphical model taking time into
account

* Finding new ways to evaluate, such as text
mining to associate with recent findings in
literature
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Motivation

ACE inhibs angloedema

%% bleedlng

[headach @




Continuous-time Graphical Models

Continuous-time, discrete-state, with piecewise-constant transition rates

Point process: piecewise-continuous conditional intensity model (PCIM)
(Gunawardana et al., NIPS 2011)

Continuous-time Bayesian networks (CTBNS) (Nodelman et al, UAI 2002)
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Example CTBN or Point Process Structure

=N

age in [50.inf)

hge in [18.inf)

B2 hge in [40.inf)

NS

1,1-20)

age in [18,inf)

pge in [50.inf)

hge in [18.inf)

Goal: recover network-dependent event rates — measured by test set log likelihood




Conclusion

ML has potential to bring new approaches to
ADE Detection task

* Can get beyond “candidate ADE” approach,
but challenges remain

— Adjust for multiple comparisons, since we
consider so many candidates

— Temporal confounding with SCCS-like approaches
can be exacerbated

— Can we reduce this with ideas from graphical
model-based approaches?



