DESIGN AND ANALYSIS OF STEPPED WEDGE TRIALS

Jim Hughes
Professor of Biostatistics
University of Washington

2nd Seattle Symposium on Health Care Data Analytics Oct 23-25, 2016

Cluster Randomized Trials

- Randomization at group level; outcome measured on individuals within the group
- Clusters may be large (cities, schools) ... or small (IDU networks, families)
- Why? Individual randomization not feasible, potential contamination, or want to measure community effect
- Usually, larger, more complex than individually randomized trial

Common Trial Designs

(a) Parallel Cluster Study

Common Trial Designs

(b) Matched Pair Parallel Cluster study

Pair	Cluster	Time	
1	1		
1	2		Intervention
2	3		
2	4		Control
3	5		
3	6		

Stepped wedge design

- Clusters are randomized as to <u>when</u> intervention is received
- All clusters receive intervention eventually

Stepped wedge design

- Time in NOT balanced between intervention and control periods
- Need to be able to measure outcome <u>on each cluster</u>, <u>at</u> <u>each time step</u> (to control for time trends)
- Cross-sectional or cohort sampling possible
 - Repeated measurements on members of a cohort may result in significant participant burden

<u>Advantages</u>

- Logistical or financial cannot introduce the intervention in all units at once
- Units act as their own control, so (likely) fewer clusters needed
- Possible to study the effect of time on intervention effectiveness (i.e. seasonality, time since introduction)
- Acceptability (social, political, ethical)
 - All clusters receive the intervention
 - Intervention never removed

<u>Disadvantages</u>

- Long time to completion
 - Increased potential for contamination
 - Increased potential for external events to influence study
 - Potential for clusters scheduled for a later start to "jump the gun"
- Relatively complex analysis
 - Intentional confounding of time and treatment must be resolved using e.g. regression analysis
 - Dependent on assumptions

<u>Disadvantages</u>

0

0

0

Inefficient compared to other row-column designs

SWD

0

 1
 1
 1
 1

 1
 1
 1
 1

 0
 1
 1
 1

0

1

R-C

1	0	1	0	1	0
0	1	0	1	0	1
1	0	1	0	1	0
0	1	0	1	0	1
1	0	1	0	1	0

Design

Scaled coefficient matricies (fixed row and col effects)

$$\theta = \sum \uparrow @ c \downarrow ij Y \downarrow ij$$

		_			_	
	-10	14	8	2	-4	-10
	-5	-11	13	7	1	-5
	0	-6	-12	12	6	0
IJ	5	-1	-7	-13	11	5
	10	4	-2	-8	-14	10

$$Var(\theta)$$

$$0.43\sigma^{2}$$

$$0.14\sigma^{2}$$

Statistical Issues - Model

Model:

$$Y_{ijk} = \mu + a_i + \beta_j + X_{ij}\theta + X_{ij}c_i + e_{ijk}$$

 $a_i \sim N(0,\tau^2)$ – variation in mean between clusters $c_i \sim N(0,\eta^2)$ – variation in tx effect between clusters $e_{ijk} \sim N(0,\sigma^2)$ – random variation

Notes:

- 1) "Standard" SW model does not include treatment heterogeneity
- 2) Model shown above assumes same time effect in all clusters
- 3) Assumes repeated cross-sectional sampling

Statistical Issues - Power

- Power = Probability of detecting a treatment effect when the treatment really works
- Depends on ...
 - strength of treatment effect
 - number of clusters, steps, participants
 - variance components: σ^2 (easy to know) , $\,\eta^2\,,\!\tau^2$ (hard to know).

Power – Variance Components

Contours of $Var(\theta)$ (× 10⁵) as a function of τ and η

Power vs # waves

Power – Delayed treatment effect

Stepped wedge with transition period

(d) Stepped Wedge Study including Transition Period

Statistical Issues - Analysis

- Use regression based analysis (GEE, GLMM)
 - Controls for time trends and correlated data
 - Uses both within and between cluster info
 - Dependent on modelling assumptions (esp GLMM)
 - GEE w/ independent working correlation inefficient
- "Vertical" analyses
 - Compare intervention and SOC at each time point and combine
 - Valid, more robust, but potentially less efficient

Stepped Wedge extension

Concurrent

0	1	1
0	0	1
0	2	2
0	0	2

Supplementation

0	1	1	1+2	1+2	1+2
0	0	1	1	1+2	1+2
0	0	0	1	1	1+2

Factorial

0	1	1+2	1+2
0	0	1	1+2
0	0	2	1+2
0	2	1+2	1+2

Is the SW design the right design?

- Consider logistical and ethical issues, social and political acceptability
- SW useful for rollout/implementation studies
 - → For intervention A vs intervention B, parallel cluster RCT (perhaps matched) may be better
- SW confounds time trends with the intervention effect
 - → ALWAYS need to control for time trends (possibly within strata)
- SW power is sensitive to cluster variation in intervention effect
- Lag (time delay) in intervention effect reduces power
 - → Design step length > time lag
- Consider potential for changes in policy, other external factors not under investigator control

Resources

Recent Reference

 Hughes JP, Granston TS, Heagerty PJ. On the design and analysis of stepped wedge trials. Contemporary Clinical Trials. 45(Pt A):55-60, 2015.

Software: http://faculty.washington.edu/jphughes/pubs.html

- Excel spreadsheet for power calculations (does NOT include cluster to cluster variation in treatment effect)
- R package for power calculation (including cluster to cluster variation in treatment effect), data tabulation, plotting