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Adap%ve	Clinical	Trial	Designs	
	FDA	is	Interested:	

	
		

	
		
		

“A	large	effort	has	been	under	way	at	FDA	
during	the	past	several	years	to	encourage	the	
development	and	use	of	new	trial	designs,	
including	enrichment	designs.”	



Adap%ve	Clinical	Trial	Designs	
Pharmaceu%cal	Companies	are	Interested:		
	
	
	
	
	
“An	adap%ve	clinical	trial	conducted	by	Merck	
saved	the	company	$70.8	million	compared	with	
what	a	hypothe%cal	tradi%onally	designed	study	
would	have	cost…”	

	



Why	Consider	Adap%ve	Designs?	

Poten%al	Benefits:	
– Can	give	More	Power	to	Confirm	Effec%ve	
Treatments/Interven%ons	and	Determine	
Subpopula%ons	who	Benefit	Most	

– Can	Reduce	Cost,	Dura%on,	and	Number	of	
Par%cipants	

– Cau%on!	adap%ve	design	not	always	beVer	
Challenge:	find	the	best	design	tailored	to	
clinical	inves%gator’s	research	ques%on	and	
resource	constraints	
	



Adap%ve	Designs	
•  Par%cipants	Enrolled	over	Time	
•  At	Interim	Analyses,	Can	Change	Sampling	in	
Response	to	Accrued	Data:	
– Adap%ve	designs	could	involve	changes	to:	

•  Sample	size	
•  Enrollment	criteria	(“enrichment”—my	focus)	
•  Length	of	follow-up		
•  Randomiza%on	probabili%es		
•  Dose	

•  SMART	designs:	If	par%cipant	fails	on	ini%al	
treatment,	randomized	to	another.	



Overview of My Research on New Adaptive Designs

PI on PCORI funded project: “Innovative Randomized Trial

Designs to Generate Stronger Evidence about Subpopulation
Benefits and Harms” Specific Aims:

1 Develop and evaluate new adaptive enrichment designs for
time-to-event and other delayed outcomes.

2 Conduct extensive simulation studies.

3 Produce user-friendly, free, open-source software to find best
design to answer a clinical investigator’s research question.

PI on FDA funded project to demonstrate strengths and
weaknesses of new adaptive trial designs in the following
clinical applications:
stroke treatment (Dan Hanley), slowing progression of Alzheimer’s
disease (Michela Gallagher), cardiac resynchronization devices
(Boston Scientific), and HIV prevention (Craig Hendrix)
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Stroke Trial Application
New Surgical Technique to Treat Intracerebral 

Hemorrhage (MISTIE, PI: Daniel Hanley) 
Subpopulations: intraventricular 
hemorrhage (IVH) < 10ml vs. not. 
Projected proportions: 0.33, 0.67.   
Primary outcome: 180 day modified Rankin 
Scale < 4. 

Clinically meaningful, minimum treatment 
effect: 12% risk difference. 

Data set used: MISTIE phase 2 trial data.



Alzheimer’s Disease 
Application

Treatment to reduce progression from mild 
cognitive impairment to Alzheimer’s 
disease. 
Subpopulations: APOE4 carrier or not. 
Primary outcome: 2 year change score in 
Clinical Dementia Rating Sum of Boxes 

Clinically meaningful, minimum treatment 
effect: 30% reduction in mean change score 

Data set used: Alzheimer’s Disease 
Neuroimaging Initiative (ADNI) cohort study



General Problem
Two predefined subpopulations that partition overall pop. 

Δ1 = Mean treatment effect for subpopulation 1 

Δ2 = Mean treatment effect for subpopulation 2 
Δ0 = Mean treatment effect for combined population 
Goal: construct adaptive enrichment design to test  

that strongly controls familywise Type I error rate, 

provides power guarantees, and optimizes expected sample  

size and/or duration. 

H01 : �1  0; H02 : �2  0; H00 : �0  0



Example of Power and 
 Type I Error Constraints

Power and Type I Error Constraints: 
1. If clinically meaningful, minimum effect  
  in both subpopulations, 80% power to reject 
     combined pop. null H00. 
2. If clinically meaningful, minimum effect in 

single subpop., 80% power to reject that null 
hyp. 

3. Strong control of familywise Type I error rate 
0.025 (one-sided). 

Goal: minimize expected sample size, averaged 
over scenarios in (1), (2), and global null.



Adaptive Enrichment Design: Group 
Sequential, Enrollment Modification Rule

• At each analysis k, compute cumulative statistics 
(e.g., z-statistics) Z0,k, Z1,k, Z2,k for combined pop., 
subpop. 1, and subpop. 2, respectively. 

• Decision rule based on these statistics to:          
stop entire trial, stop single subpopulation accrual 
but continue other, continue both. (Cannot restart 
accrual once stopped.) 

• No other adaptive features (e.g., randomization 
ratio fixed)



Multiple Testing Procedure
H01 : �1  0; H02 : �2  0; H00 : �0  0

At each analysis k: 
1. (Test efficacy) For each population s∈{0,1,2}, 
     if Zs,k > us,k, reject H0s. 

Also, if both H01 and H02 are rejected, reject H00. 

2. (Modify Enrollment) Stop enrollment of  
   subpopulation s∈{1,2}, if any of following occur:  

    H0s was rejected, Zs,k < ls,k, or Z0,k < l0,k. 

Boundaries us,k, ls,k  set by error-spending functions  
    (Maurer and Bretz, 2013; Rosenblum et al. 2016a,b).



Trial Design Optimization 
Problem

• Many design parameters to set: number of stages, 
per-stage sample sizes, efficacy and futility 
boundaries for each (stage, population) pair 

• We developed software tool to automatically optimize 
over design parameters; goal is to minimize expected 
sample size under power and Type I error constraints.  

-Algorithm: Simulated Annealing. 

-User-friendly graphical user-interface. 

-Outputs reports comparing optimal designs





Design Optimizer Outputs
1. Optimized adaptive and standard 
designs that satisfy all power and Type I 
error constraints 

2. Performance comparisons in terms of: 
sample size, duration, power, Type I 
error.  

3. Highlight key tradeoffs. 

4. Plots of efficacy and futility boundaries



Example of Optimization: 
Stroke Trial Application

Search over 4 classes designs: 

1. Separate error spending functions for efficacy and 
futility boundaries using power family, unequal per-
stage sample sizes, up to 10 stages  

2. O’Brien-Fleming boundaries, 5 stages, equal per-
stage sample sizes 

3. Pocock boundaries, 5 stages, equal per-stage 
sample sizes 

4. Single stage designs



Comparison of Optimized 
Designs: Stroke Trial Application
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Performance Tradeoff Summary among Best Designs 

Comparison of Optimized 
Designs: Stroke Trial Application

Optimized 
Adaptive 

Enrichment 
Design

Optimized  
1-Stage

Expected Sample 
Size 968 1430

Maximum Sample 
Size 1787 1430



Optimized Adaptive Design 
Boundaries: Stroke Trial Application
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Challenges in Constructing 
Realistic Simulations/Scenarios 

How to use prior trial data, observational study data, and 
healthcare data sets to help define realistic scenarios where 
performance of new designs/estimators can be evaluated. 

Want:  

a. Mimic key features of real data sets (e.g., correlations 
between baseline variables and outcome, event rates, 
outcome variances) 

b. Data generating distributions not built using same models 
that are used in estimators (since could lead to overly 
optimistic performance evaluation) 



Resampling from Datasets
Example Goal: Evaluate designs for future phase 3 trial, by 
constructing simulation distributions that mimic key features of 
target populations. 

Resample participant data vectors, e.g., (Baseline variables, 
Treatment, Outcome), from data sets (e.g., ADNI study).  
Preserves within-patient correlations and outcome variances.  

To simulate no treatment effect, can replace each Treatment by 
independent Bernoulli(1/2). To simulate non-zero effects, can shift 
outcome distribution in treatment arm. 

Caution when extrapolating from phase 2 data to phase 3. Ideally, 
resample from much larger data set than study being planned. 
Need e.g., obs. study, healthcare data set, merged data from 
related RCT’s.



Ideas and Open Research 
Problems

• If multiple data sources, should one mix the 
populations or do separate simulations (or both)? 

• Should one extract summary population features only 
(e.g., correlations, event rates, dropout) and build data 
generating distributions using parametric models, or 
directly resample? 

• Related work by Susan Gruber on Observational 
Medical Dataset Simulator (OSIM2): build simulations 
with causal structure using DAG. 

• Objective third party to create simulation scenarios, to 
avoid cherry-picking data generating distributions.
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