
1

01: Introduction 2016 Slide: 1

Introduction

Health care analytics in the presence
of big data: Case studies in Python and

Apache Spark

01: Introduction 2016 Slide: 2

Welcome!

• Thank you to our hosts for allowing us the
opportunity to give this workshop.

• Thank you to the participants for your interest!

• Let us introduce ourselves…

2

01: Introduction 2016 Slide: 3

Debashis Ghosh

• Professor and Chair, Department of Biostatistics
and Informatics, ColoradoSPH

• UW grad (yeah!)

• Interests in: machine learning, causal inference,
integrative genomics

• Dabbler in big data/data science

• After-work interests: reading, playing violin,
running

01: Introduction 2016 Slide: 4

Evan.Carey@va.gov

• Work
• Statistician / Data Scientist

• 5 years working in large administrative datasets with
Veterans Healthcare Administration

• Coding
• R, SAS, Python, SQL variants, Spark

• Education
• Masters of Science in Applied Biostatistics from CSPH

• PhD Candidate in Epidemiology

• Play
• Tennis, Volleyball, drums 

3

01: Introduction 2016 Slide: 5

Big Data, right?

• Can someone define big data for me?

• When hear the phrase big data, what
other words come to mind?

01: Introduction 2016 Slide: 6

(Collaborative Filtering Algorithm)

BIG
DATA

Hadoop

The Cloud

Distributed
Computing

SQL NoSQL

Spark

R breaks!

4

01: Introduction 2016 Slide: 7

This new thing, big data 

• September 1994: BusinessWeek publishes a
cover story on “Database Marketing”

• An earlier flush of enthusiasm prompted by the
spread of checkout scanners in the 1980s ended in
widespread disappointment: Many companies were
too overwhelmed by the sheer quantity of data to do
anything useful with the information… Still, many
companies believe they have no choice but to brave
the database-marketing frontier.”

01: Introduction 2016 Slide: 8

Knowledge discovery in databases
• 1996 Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth

publish “From Data Mining to Knowledge Discovery in Databases.” They
write:

• “Historically, the notion of finding useful patterns in data has been
given a variety of names, including data mining, knowledge extraction,
information discovery, information harvesting, data archeology, and
data pattern processing… In our view, KDD [Knowledge Discovery in
Databases] refers to the overall process of discovering useful knowledge
from data, and data mining refers to a particular step in this process.
Data mining is the application of specific algorithms for extracting
patterns from data… the additional steps in the KDD process, such as
data preparation, data selection, data cleaning, incorporation of
appropriate prior knowledge, and proper interpretation of the results of
mining, are essential to ensure that useful knowledge is derived from
the data. Blind application of data-mining methods (rightly criticized as
data dredging in the statistical literature) can be a dangerous activity,
easily leading to the discovery of meaningless and invalid patterns.”

5

01: Introduction 2016 Slide: 9

The analytic process

1 • Break R trying to import data

2
• Use the cloud and Hadoop to

distribute something

3
• ??

4
• Great analysis

• (profit)

01: Introduction 2016 Slide: 10

Bottom line.

• How do I accomplish the analytic process I know (and
love) in the presence of increasing dimensionality?

Import Data EDA / Clean
Fit

Multivariate
Methods

6

01: Introduction 2016 Slide: 11

Reasonable questions

• What software environment can I use in large
data?

• What is Hadoop, or Spark?

• How can I store my data?

• SQL versus NoSQL?

• What statistical methods should I use on my
data?

• Is machine learning the answer?

• What is machine learning…?

01: Introduction 2016 Slide: 12

Course Objectives
• Contextualize course with VM including Python,

SQLite, Spark, and sample data.
• Applied understanding of data science in Python
• Applied understanding of data science in Apache

Spark
• Fully define a modeling approach
• Evaluate the impact of big data on the analytic

workflow
• Contrast machine learning versus “frequentist”

approaches
• Focus on data management and a classification

problem.

1

02: Software Introduction 2016 Slide: 1

Software Introduction

Health care analytics in the presence
of big data: Case studies in Python and

Apache Spark

02: Software Introduction 2016 Slide: 2

Virtual Machine!

• We have provided a virtual machine for this
course:

• Linux (CentOS7 Minimal install)

• Anaconda Python Stack

• Apache Spark

• Sqlite

• Some interesting datasets

• This can be run with Virtualbox

• 8GB RAM needed.

2

02: Software Introduction 2016 Slide: 3

Data in the VM

• Group Medical Cost/Claims

• I included the PDF description of this data source in
your VM.

• Cost data for 1.6 million patients in the late 90’s.

• I have cleaned/modified the data for ease of use.

• Simulated_Cluster_Person

• I simulated this dataset of 10k patients

• Some intentional data issues

• Binary outcome of interest.

02: Software Introduction 2016 Slide: 4

Python for Analysis

• We will be using the Anaconda Python
Distribution, Python 3.5.XX
• This has everything we need, is open source, and is

easy to install.

• This includes…

• The python kernel

• Ipython (enhanced interpreter)

• Spyder (IDE)

• Scientific Stack of libraries (packages)

• We could build a Python stack from scratch,
compiling all libraries we need…this is not trivial.

3

02: Software Introduction 2016 Slide: 5

Python Analytics Packages
• Ipython

• Enhanced interpreter

• Numpy
• Matlab type stuff
• Ndarray object

• Matplotlib
• Plotting in 2d originally (now some 3d)

• Pandas
• Dataframe class, time series analysis

• Stat models
• Frequentist multivariate approaches

• Scikit learn
• Machine learning

02: Software Introduction 2016 Slide: 6

• The basic collection of objects in Python is a list

• Make a list with square brackets.

This is a comment

Create a collection (list) of numbers

x1 = [1,2,3,4]

Create a list of characters

name = ['Evan','Debashis']

Basic Python

4

02: Software Introduction 2016 Slide: 7

• We bring in additional functionality by importing
modules.

Use the import statement.

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

Importing modules

02: Software Introduction 2016 Slide: 8

Python Analysis Overview

Pandas • Import and clean data, EDA

Patsy
•Create model matrices

(numpy objects)

Numpy
•Matrices as inputs to

models

Scikit-
learn

•Pre-processing, Fit
multivariate methods

5

02: Software Introduction 2016 Slide: 9

Functional Examples

• Lets work through some python code together.

• All code is available on your virtual machine.

• You should be able to run all the code and get a
feel for the environment.

1

03: Big Data Analytics 2016 Slide: 1

Big Data Analytics

Health care analytics in the presence
of big data: Case studies in Python and

Apache Spark

03: Big Data Analytics 2016 Slide: 2

Defining big data

• Big Data Definition:

• Data exceeds memory

• Data exceeds hard drive on typical workstation

• Data exceeds hard drive space on a single server

• I typically define “big data” functionally…whenever
my environment or analytic approach must be
changed due to the size of the data I am working
with.

2

03: Big Data Analytics 2016 Slide: 3

Analytic process

• What are the issues posed by high dimensionality
data in the above process?

Import Data EDA / Clean
Fit

Multivariate
Methods

03: Big Data Analytics 2016 Slide: 4

Possible issues

• Data will not fit into…

• RAM

• Hard drive

• Computations are too expensive

• Algorithms take too long to converge

• Algorithms fail to converge

• Not enough memory to run algorithms!

3

03: Big Data Analytics 2016 Slide: 5

Vertical Scaling

• Not enough RAM
• Buy more RAM

• Spill to hard drive (Does R or Python do this?)

• Not enough hard drive
• Buy bigger hard drive

• Won’t fit on desktop
• Buy server!

• Not enough server RAM
• Upgrade server…?

• Computations take too long
• Get faster processor!

03: Big Data Analytics 2016 Slide: 6

Horizontal Scaling

• Out of RAM/Disk
space
• Use more

computers!

• Computations take
too long
• Distribute

computations
across multiple
computers / threads

• Parallel execution of
tasks

4

03: Big Data Analytics 2016 Slide: 7

Distributed Computing

• Distributed Data

• Data won’t fit in one place.

• Need to break data into pieces and store across
multiple nodes.

• Distributed Computation

• Computation is too expensive.

• Gain overall efficiency by distributing computations

03: Big Data Analytics 2016 Slide: 8

Distributed Data

• What are some things we need in a distributed
data model?

• Fault Tolerance

• Scalability

• Storage (throughput)

• Retrieval

• Ease of analysis / merging data elements

5

03: Big Data Analytics 2016 Slide: 9

Data Partitions

• When we break data apart, we can intelligently
partition the data according to future needs.

• Partition by hospital ID

• Partition by patient

• Partition by interesting clusters…

• This will allow subsequent processing efficiency

03: Big Data Analytics 2016 Slide: 10

Approach #1: Store big, analyze small

• Use a distributed data model to organize and
keep large data

• Analyze subsets of the data

• Take a 2% sample of the data

• Bring into R/Python

• Proceed…

• Analyze Summaries of the data

• Reduce data with basic summary measures

• Analyze summary measures

6

03: Big Data Analytics 2016 Slide: 11

Relational Database (RDBMS)

• Who knows what SQL/RDBMS is?

• Structured Query Language (SQL)

• Came out in 1970’s

• Microsoft SQL Server

• Oracle

• MySQL

• SQLite

03: Big Data Analytics 2016 Slide: 12

NoSQL

http://www.networkworld.com/article/2226514/tech-debates/what-s-better-
for-your-big-data-application--sql-or-nosql-.html

• Can someone define NoSQL?

7

03: Big Data Analytics 2016 Slide: 13

Not Only SQL (NoSQL)

• Focus on Horizontal Scalability

• Don’t need to fully define data elements before
it is stored

• No Complex schema requirements

• Can collect many different types of data

• High throughput

• Simplest Example:

• Key – Value pairs

• JSON Databased

03: Big Data Analytics 2016 Slide: 14

DBMS (SQL) Versus NoSQL

DBMS

• Fast Read Access

• Long Load Time

• Transaction level-
fault tolerance

• Vertical
Scalability

NoSQL

• Slower Random
Read Access

• High Throughput

• Horizontal
Scalability

8

03: Big Data Analytics 2016 Slide: 15

Distributed Computations

• Work on one piece of data at a time

• Process chunk

• Store result

• Work on next chunk

• What common data processing steps might not
work well in this environment?

• What are the newly incurred costs associated
with this approach?

03: Big Data Analytics 2016 Slide: 16

Serial Versus Parallel Computation

Result 1 Result 2 Result 3 Result 4…

9

03: Big Data Analytics 2016 Slide: 17

Apache Hadoop

• What do you know about Hadoop?

• How popular is it?

• Advantages?

• Disadvantages?

03: Big Data Analytics 2016 Slide: 18

Apache Hadoop
The Apache™ Hadoop® project develops open-source
software for reliable, scalable, distributed computing.

The Apache Hadoop software library is a framework that
allows for the distributed processing of large data sets across
clusters of computers using simple programming models. It is
designed to scale up from single servers to thousands of
machines, each offering local computation and storage.
Rather than rely on hardware to deliver high-availability, the
library itself is designed to detect and handle failures at the
application layer, so delivering a highly-available service on
top of a cluster of computers, each of which may be prone to
failures.
-From hadoop.apache.org

10

03: Big Data Analytics 2016 Slide: 19

Hadoop

• History:
• Apache Project

• 2004 – Google publishes Map-Reduce paper

• Doug Cutting created Hadoop ~ 2006

• Hadoop 0.1.0 released April 2006

• 2009 – HDFS and Map-reduce designated separate
sub-projects

• 2010 – Apache Hive, Pig

• 2012 – Hadoop 1.0 released

• 2013 – October – Hadoop 2.2 released

• 2015 – Hadoop 2.7 released

03: Big Data Analytics 2016 Slide: 20

Hadoop

H
A

D
O

O
P

 Distributed Data (File system)

HDFS

Distributed Analysis

MapReduce

11

03: Big Data Analytics 2016 Slide: 21

Hadoop part 1: Data Storage

• Distributed data file system

• Hadoop Distributed File System (HDFS)

• Written in Java

• Data is replicated across Clusters (fault tolerance)

• Data is split by key-value pairs and stored in different
nodes

• This is a high-throughput, but high latency system

03: Big Data Analytics 2016 Slide: 22

Hadoop Distributed File System

• Advantages

• Highly scalable – just add more hardware

• Scales “linearly” with hardware addition

• Store big data across multiple nodes

• Fault detection and recovery

• Disadvantages

• Write once, read many times

• Bad for mutable data

• High latency for data retrieval

• Analysis of data requires use of map-reduce framework

12

03: Big Data Analytics 2016 Slide: 23

Hadoop part 2: Data Processing
• Distributed Data Processing: MapReduce
• Map-reduce is the programming approach that allows the

scalability and parallel nature of Hadoop
• Map

• This step selects and subsets values, then returns them as a
key and value pair. This is the intermediate key-value pair
object

• Reduce
• This step receives the key-value object from Map, using the

keys to collate all values with identical keys. We define some
set of functions to each key sub-group and return the result as
a key-value pair.

• Original Google Publication:
• http://research.google.com/archive/mapreduce.html

03: Big Data Analytics 2016 Slide: 24

MapReduce Analytics

• Advantages of Hadoop:
• Scalable to thousands of nodes

• We can do analysis on datasets too large for memory

• Once programming in map-reduce is written, it is
automatically scaled with more nodes

• Disadvantages of Hadoop:
• Map-reduce has overhead costs that exist no matter

how small the data is.

• Interactive analysis is difficult

• Map-reduce programming is difficult, and requires us
to explicitly make algorithms parallel

13

03: Big Data Analytics 2016 Slide: 25

Related Hadoop Projects

• Apache Pig

• High-level platform to interface with HDFS

• Uses “pig-latin”

• Requests are translated to map-reduce jobs

• Apache Hive

• Data warehouse

• SQL esque interface, Hive Query Language (HQL)

• HQL is translated to map-reduce jobs

• JDBC Drivers are available

03: Big Data Analytics 2016 Slide: 26

Related Hadoop Projects

• Apache Hbase

• NoSQL database modeled after Google’s BigTable

• Overcomes some HDFS limitations of random read

• This is a key-value store that sites on top of HDFS

• Requires a custom language to learn

14

03: Big Data Analytics 2016 Slide: 27

Dream Software

• Distributed data model with enough structure to
make interactive use easy.

• Dataframe like object native to the software

• Fast.

• Designed with data analysis and statistical
frameworks in mind.
• I don’t want to hard code a correlation algorithm…I want

to call the cor() function!

• Don’t want to learn yet another language to use it.
• Should have a few API options analysts already know.

• Free! Umm, I mean Open source!

03: Big Data Analytics 2016 Slide: 28

Apache Spark

• “Apache Spark is a fast and general-purpose
cluster computing system.” – Spark Homepage

• Developed at UC Berkely AMPLab

• Donated to Apache Foundation, now part of the
Hadoop ecosystem

• Often associated with Hadoop, but truly distinct

15

03: Big Data Analytics 2016 Slide: 29

Apache Spark History

• 2009
• Started by Matei Zaharia at UC Berkley AMPLab

• 2012 – Version 0.5.1

• 2013
• Version 0.8.1

• Donated to Apache Software Foundation

• 2014
• Version 1.0

• 2016
• Version 2.0

03: Big Data Analytics 2016 Slide: 30

Spark
• Distributed Data Structures

• Resilient Distributed Dataset(RDD)
• Not so much structure

• Dataset/Dataframe
• Newly added functionality
• More structure to make data optimizations

• Speed
• Spark is significantly faster than Hadoop
• Spark operates in memory when possible
• Spark reduces the number of read/write cycles compared

to MapReduce
• Spark =/= MapReduce

16

03: Big Data Analytics 2016 Slide: 31

Spark Build

• Spark can be built on top of Hadoop

• Uses the YARN resources manager

• Alternatively, uses the MapReduce

• Spark can also be run in standalone mode

• Uses HDFS, but does not use the Hadoop Resource
Manager

03: Big Data Analytics 2016 Slide: 32

Spark

• Analytics
• Spark has an SQL interface

• Spark also has a machine learning library

• GraphX

• Spark Streaming

• API’s
• Native Code in Scala

• Java

• Python

• R

Big-data Machine Learning using Python and Spark

Evan Carey and Debashis Ghosh

Departments of Epidemiology and Biostatistics and Informatics, Colorado School of Public
Health

2016 Seattle Symposium on Health Care Analytics

debashis.ghosh@ucdenver.edu ML in Python and Spark

Basic Example: Logistic regression

Let Y ∈ {0, 1} denote the response

Let X denote the covariates

Model:
logit{P(Y = 1|X)} = α + X′β,

where logit(u) = log{u/(1− u)} and (α, β) are the regression
coefficients

debashis.ghosh@ucdenver.edu ML in Python and Spark

Logistic regression (cont’d.)

Estimation approaches
1 Maximum likelihood
2 Method of moments
3 Robust estimation
4 Penalized/Bayes procedures

These will define the loss function to be used

debashis.ghosh@ucdenver.edu ML in Python and Spark

Logistic regression (cont’d.)

We also need an algorithm for estimation
1 Newton-Raphson (Fisher scoring)
2 Simulation-based
3 Markov Chain Monte Carlo

debashis.ghosh@ucdenver.edu ML in Python and Spark

Logistic regression (cont’d.)

This example, while simple, illustrates key points about modeling:
1 Give a model specification
2 Propose a means for estimation
3 Use an algorithm for estimation

debashis.ghosh@ucdenver.edu ML in Python and Spark

Big Data Paradigm

Focus on the algorithm

Many of the computations we are “used to making” become
infeasible for a variety of reasons

1 Data can’t be stored on one server
2 Matrices become too big to work with

Big data requires a revisit and reexploration of our “standard”
algorithms in which we determine techniques to make them scalable.

However, that does not mean forget about specification and
estimation!

debashis.ghosh@ucdenver.edu ML in Python and Spark

Logistic regression revisited

“Standard” estimation approach: maximum likelihood with
Newton-Raphson

This is equivalent to an iteratively reweighted least squares algorithm

This requires matrix inversion and matrix multiplication, which can be
computationally infeasible

debashis.ghosh@ucdenver.edu ML in Python and Spark

Logistic regression

One approach to make this scalable: use gradient descent algorithm

Such an algorithm corresponds to adopting an L1 penalty for β

This yields the following penalized log-likelihood:

n∑
i=1

Yi log pi (α, β) + (1− Yi) log{1− pi (α, β)}+ λ(|α|+
p∑

j=1

|βj |),

where λ ≥ 0 is a smoothing parameter and

pi (α, β) =
exp(α + X′β)

1 + exp(α + X′β)
,

i = 1, . . . , n.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Model specification

Several types of categorizations:
1 Y |X (prospective) versus X|Y (retrospective)
2 Y |X or X|Y (discriminative) versus (X,Y) (generative)

Associated properties
1 Distributional family for Y (e.g., binomial distribution for logistic

regression)
2 Link function

debashis.ghosh@ucdenver.edu ML in Python and Spark

Formulation as optimization problem

Typically, statisticians have worked with maximum likelihood
estimation

Attractive properties:
1 Assume exponential family with “proper” parameter space: equivalent

to maximizing a convex function over a convex set ⇒ maximizer
(MLE) will be a global optimizer

debashis.ghosh@ucdenver.edu ML in Python and Spark

Formulation as optimization problem (cont’d.)

Machine learning: Kuhn-Karush-Tucker (KKT) theory

Formulate as an optimization problem subject to equality and
inequality constraints

Generic formulation: Maximize

f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I) and hj(x) = 0, j = 1, . . . , J

Equivalently expressed as minimize

f (x) +
I∑

i=1

λigi (x) +
J∑

j=1

λ∗j hj(x)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Formulation as optimization problem (cont’d.)

KKT necessary conditions for finding a global optimum:
1 Stationary conditions (first derivative equals zero)
2 Feasibility: at optimum, inequality and equality constraints are satisfied
3 Complementary slackness: at optimum, λigi (x

∗) = 0

debashis.ghosh@ucdenver.edu ML in Python and Spark

Formulation as optimization problem (cont’d.)

KKT sufficient conditions for finding a global optimum: f is an invex
function (generalization of convex): there exists a vector-valued
function g(x , u) such that

f (x)− f (u) ≥ g(x , u) · ∇f (u)

for all x , u, where ∇f denotes the gradient of f

debashis.ghosh@ucdenver.edu ML in Python and Spark

Example of KKT (Liu et al., 2007)

Formulate a semiparametric linear model for a continuous y :

yi = β0 + xi
Tβ + h(zi) + ei

where i = 1, . . . , n,
xi = (xi1, . . . , xiq)T ,
zi = (zi1, . . . , zip)T

β = (β1, . . . , βq)T

h(zi) = unknown smooth nonparametric function, where
h ∈ H=some functional space,
e ∼ N(0, σ2I).

debashis.ghosh@ucdenver.edu ML in Python and Spark

Liu et al., 2007, continued

Estimate β and h(·) by minimizing the penalized sum of squares:

n∑
i=1

{yi − (β0 + xi
Tβ + h(zi))}2 + λ‖h‖2H

This is a standard penalized likelihood problem

Standard approach: take H to be a reproducing kernel Hilbert space
(Wahba, 1990)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Liu et al., 2007, continued

Primal formulation:

min 1
2

∑n
i=1 e

2
i + 1

2λ‖ω‖
2

s.t. ei = yi − {β0 + xi
Tβ + φ(zi)

Tω}

for i = 1, . . . , n

debashis.ghosh@ucdenver.edu ML in Python and Spark

Liu et al., 2007, continued

Introduce the Lagrangian multiplier (dual parameters) γ and form the
Lagrangian function

L(ω,β, e;γ) =

1

2

n∑
i=1

e2i +
1

2
λ‖ω‖2−

n∑
i=1

γi{β0 + xi
Tβ + φ(zi)

Tω + ei − yi}

The dimension of γ = n (low dimension).

The dual formulation is obtained by removing the high dimensional
parameters ω and writing L(ω,β, e;γ) as a function of dual
parameters γ and β alone.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Liu et al., 2007, continued

Optimality conditions
∇ωL = ′ → ω = 1

λ

∑n
i=1 γiφ(zi)

∂L
∂ei

= 0 → ei = γi
∇βL = ′ →

∑n
i=1 γixi = 0

∂L
∂γ i

= 0 → xi
Tβ + φ(zi)

Tω + ei − yi = 0

debashis.ghosh@ucdenver.edu ML in Python and Spark

Liu et al., 2007, continued

The dual formulation is obtained by substituting ω̂ and ê into the last
equation:{

yi − xi
Tβ − 1

λ

∑n
i ′=1 γi ′φ(zi)

Tφ(zi ′)− γ i = 0∑n
i=1 γixi = 0

Estimation in the dual formulation is low dimensional.

The estimator ĥ(z) = λ−1
∑n

i=1 γ̂iφ(z)Tφ(zi).

Computation of γ̂ and ĥ(z) hence only requires evaluating the kernel
function

k(z , z ′) =< φ(z),φ(z ′) >= φ(z)Tφ(z ′).

This is referred to as a kernel method (visit later)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Optimization

Most machine learners phrase modelling as an optimization problem
with constraints as in prior example

For most problems, this will correspond to a loss function

L(β) =
n∑

i=1

l(Yi ,Xi , β)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Optimization (cont’d.)

Examples
1 l(Yi ,Xi , β) = (Yi − Xiβ)2 (quadratic loss)
2 l(Yi ,Xi , β) = |Yi − Xiβ|ε, where

|u|ε=

{
u2/2, |u|< ε

ε(|u|−ε/2), else

This is Huber loss
3 If Y is binary,

l(Yi ,Xi , β) ≡ Yi logP(Yi = 1|Xi) + (1− Yi) logP(Yi = 0|Xi)

is the binomial likelihood
4 Other losses are possible (e.g., hinge loss for support vector machines,

boosting, etc.)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Optimization (cont’d.)

For several reasons, machine learners penalize the loss function

Reasons
1 Numerical stability
2 Allow for nonlinearities
3 Expand set of available big-data scalable algorithms
4 Leads to better generalizability

Amounts to minimizing

L(β) + λP(β)

where λ > 0 is a smoothing parameter and P(β) is the penalty term

debashis.ghosh@ucdenver.edu ML in Python and Spark

Choices for P(β)

Take P(β) to be an L1 constraint on the regression coefficients; this
is commonly referred to as LASSO (least absolute selection and
shrinkage operator)

Perform LASSO of Y on X by solving:

n∑
i=1

l(Yi ,Xi , β) s.t.

p∑
j=1

|βj |≤ t, (1)

where β are unknown regression coefficients, and t ≥ 0 is a
smoothing parameter.

Has the property of exactly estimating certain coefficients to be
zero ⇒ automated feature selection

debashis.ghosh@ucdenver.edu ML in Python and Spark

LASSO: Some theory

Statisticians have explored when this type of procedure leads to
consistent model selection

Sufficient conditions
1 The irrelevant variables cannot be too correlated with the true variables
2 Subgaussian tails for the random variables

Key is that this is a penalty and lead to improved prediction on new
datasets.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Ridge regression

Take P(β) to be an L2 constraint on the regression coefficients; this
is commonly referred to as ridge regression(least absolute selection
and shrinkage operator)

Perform LASSO of Y on X by solving:

n∑
i=1

l(Yi ,Xi , β) s.t.

p∑
j=1

β2j ≤ t, (2)

where β are unknown regression coefficients, and t ≥ 0 is a
smoothing parameter.

Has the property of shrinking correlated features towards zero but
not estimating any coefficients to be exactly zero

debashis.ghosh@ucdenver.edu ML in Python and Spark

Comparison of LASSO and ridge regression
http://bit.ly/2dXxw7y

debashis.ghosh@ucdenver.edu ML in Python and Spark

http://bit.ly/2dXxw7y

Penalized Regression

Compromise of Ridge and LASSO: Elastic Net (Zou et al., 2005),
which minimizes

n∑
i=1

l(Yi ,Xi , β) + λ1

p∑
j=1

|βj |+λ2
p∑

j=1

β2j (3)

where λ1, λ2 ≥ 0 are smoothing parameters

Has the effect of performing (a) automatic grouping of correlated
predictors and (b) variable selection.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Optimization Algorithms

Many standard algorithms in statistical procedures are sequential

Generically, this means that computation at iteration t + 1 requires
saving output from iteration t as well as data

For big data, this might not be efficient from either a computational
or storage point of view

Sequential algorithms in general do not scale

debashis.ghosh@ucdenver.edu ML in Python and Spark

Big Data Optimization Techniques

Active area of research

Some proposed solutions:
1 Randomization
2 Distributed algorithms
3 Asynchronous algorithms

debashis.ghosh@ucdenver.edu ML in Python and Spark

Randomization

Classical example: gradient descent

Goal: minimize f (w), where w ∈ Rd

find a local minimum of a function by iteratively taking steps in the
direction of steepest descent

Finding the direction of steepest descent can be computationally
unscalable for big datasets

One solution: pick a descent direction at random and compute the
gradient

Iterate this to convergence

debashis.ghosh@ucdenver.edu ML in Python and Spark

Stochastic Gradient Descent

Works well with penalization problems of the form

λP(β) +
n∑

i=1

l(Yi ,Xi , β)

Pick one observation from random

Compute subgradient with respect to data point (inexact gradient)

Move objective function in the direction of the negative subgradient
with respect ot data point

Cheap computations

debashis.ghosh@ucdenver.edu ML in Python and Spark

Distributed Algorithms

Make use of a parallel computing environment

Take task and have several nodes run the task in parallel

Two issues that complicate these algorithms:
1 Communication: nodes talking to each other
2 Synchronization: nodes must be coordinated in performing parallel

tasks

debashis.ghosh@ucdenver.edu ML in Python and Spark

Distributed Algorithms (cont’d.)

Separable functions like

n∑
i=1

l(Yi ,Xi , β)

are amenable to distributed algorithms (embarassingly parallel)

Have a node dedicated to some parameters and only compute the
gradient for those

Alternative: asynchronous computations

debashis.ghosh@ucdenver.edu ML in Python and Spark

Spark: an aside

Main abstraction in Spark is that of a resilient distributed dataset
(RDD), which represents a read-only collection of objects partitioned
across a set of machines that can be rebuilt if a partition is lost
(lineage)

written in Scala, a typed high-level programming language for the
Java VM

Can “parallelize” a Scala collection (e.g., an array) in the driver
program, which means dividing it into a number of slices that will be
sent to multiple nodes

Can perform distributed versions of SGD

debashis.ghosh@ucdenver.edu ML in Python and Spark

Support vector machines

• Suppose that we have two groups of observations

• Intuition behind SVMs: find the separating hyperplane that maximizes
the margin between two groups and perfectly classifies observations

• margin: distance between the hyperplane and points

• Sometimes to achieve perfect classification, slack variables are
introduced into the problem, along with a regularization parameter C

debashis.ghosh@ucdenver.edu ML in Python and Spark

SVM: 2-D representation (from Jaggi, 2013)

debashis.ghosh@ucdenver.edu ML in Python and Spark

SVM

SVM primal optimization:

min
w,b
‖w‖2

subject to Yi (w · Xi − b) ≥ 1, i = 1, . . . , n.

1/‖w‖ is proportional to the margin, so can reexpress as maximizing
the margin

SVM dual formulation:

max
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjYiYj < Xi ,Xj >

subject to αi ≥ 0 (i = 1, . . . , n) and
∑n

i=1 αiYi = 0 where < ·, · >
denotes inner product

debashis.ghosh@ucdenver.edu ML in Python and Spark

SVM: remarks

Typically, the dual SVM problem has been simpler to solve, as it is a
quadratic programming problem

Not necessarily the case with big data

SVM can be cast in the loss function framework as

n∑
i=1

|1− Yi f (Xi)|++λP(f)

where |u|+= max(u, 0) and P(f) is a penalty on f .

debashis.ghosh@ucdenver.edu ML in Python and Spark

SVM: optmization

Typically done using a sequential minimization optimization (SMO)
algorithm

With big data, SMO is not usable because of storage issues

An alternative is to use stochastic gradient descent, which is what is
implemented in Spark for linear kernel

debashis.ghosh@ucdenver.edu ML in Python and Spark

Decision trees

Decision tree is a greedy algorithm that performs a recursive binary
partitioning of the feature space.

Also referred to as classification and regression trees in the literature

MLlib 1.2 adds several features for scaling up to larger (deeper) trees
and tree ensembles

Big concern: overfitting

Inherently, decision trees are unstable classifiers

debashis.ghosh@ucdenver.edu ML in Python and Spark

Random Forests

Ensemble of decision trees

By averaging unstable classifiers, we have a more stable prediction
algorithm

In Spark, these are fit using randomized approach

debashis.ghosh@ucdenver.edu ML in Python and Spark

Dimensionality reduction methods

Principal components analysis (PCA)

Singular value decomposition (SVD)

These are unsupervised methods

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA: background

Goals of PCA

1 Geometry: Find a new coordinate system obtained by rotating the
original system with X1, . . . ,Xp as the coordinate axes, where the new
axes represent the directions with maximum variability and provide a
simpler and more parsimonious description of the covariance structure.

2 Optimization: Find the set of uncorrelated linear combinations of
variables that explain the greatest amount of variability of variables

debashis.ghosh@ucdenver.edu ML in Python and Spark

Variance-Covariance matrix: review

Let X ≡ (X1 X2 · · · Xp)
′

denote a p × 1 vector
Then the (population) variance-covariance matrix is

Σ = [σij]i ,j=1,...,p,

where σij = E [(Xi − µi)(Xj − µj)], and µi is the mean of Xi .
Now variance is a p × p matrix, and what summarizes the variability
are p points, each of which is a p−dimensional vector.
Note that Σ will be symmetric
If the distribution for Y is nondegenerate, then Σ will also be positive
definite (i.e., all eigenvalues of Σ are positive)

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA

principal components (PCs): the linear combinations of (X1, ...,Xp)
that are uncorrelated and for which

Var(a′iX) = ai
′Σai , i = 1, . . . , p

is as large as possible.
Statistical goal: Determine a1, . . . , ap.
By definition, a′iaj = 0 for i 6= j
Also add in the constraint that a′iai = 1 for i = 1, . . . , p.

debashis.ghosh@ucdenver.edu ML in Python and Spark

PC Definition

First PC: linear combination a′1X that maximizes Var(a′1X) subject to
a′1a1 = 1.

Second PC: linear combination a′2Y that maximizes Var(a′2X) subject
to a′2a2 = 1 and Cov(a′1X, a′2X) = 0.

In general, ith PC: linear combination a′iX that maximizes Var(a′iX)
subject to a′iai = 1 and Cov(a′iY, a

′
jX) = 0 for j = 1, 2, . . . , i − 1.

The solution to this optimization problem is given by the
eigenvalue/eigenvectors of Σ.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Sample estimator of a covariance matrix

Let x1, . . . , xn be a random sample of p−dimensional vectors

Then the sample covariance matrix estimator is given by

S =
1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)
′
,

where x̄ = n−1
∑n

i=1 xi .

Alternatively, S = [sij], i , j = 1, . . . , p, where

sij =
1

n − 1

n∑
k=1

(xki − x̄i)(xkj − x̄j),

where x̄i and x̄j are the ith and jth component of x̄

The diagonals of S: sample variances

The off-diagonals of S: sample covariances

debashis.ghosh@ucdenver.edu ML in Python and Spark

Sample PCA

Algorithm:

Estimates of population PCs obtained by calculating the eigenvectors
of S, sorted from largest to smallest eigenvalue

Estimate of ai (ith PC): eigenvector of S corresponding to to ith
largest eigenvalue, i = 1, . . . , p. Note: the estimated eigenvalues
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0.

Proportion of total population variance of X explained by the ith PC
is estimated by

λ̂i∑p
j=1 λ̂j

.

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA: number of components

Major question: how many PCs to use in analysis

Statistically, this is a hard problem

Some old solutions: do a series of hypothesis tests on eigenvalues,
testing H0 : λi = λi+1 versus HA : λi > λi + 1

Old theory based on asymptotics and multivariate normality of
original data

A more robust solution: bootstrap and get CIs for λ

A more practical solution: choose number of PCs so that variability
explained is 80− 90%

debashis.ghosh@ucdenver.edu ML in Python and Spark

Scree plot

A plot of eigenvalues of S in decreasing order.

By looking for an elbow (bend) in the scree plot, we can determine
the number of PCs.

A visual test for number of PCs

debashis.ghosh@ucdenver.edu ML in Python and Spark

More about Principal Components Analysis (PCA)

Recall:
1 PCA results are different based on whether or not sample covariance or

sample correlation matrix is used
2 More generally, results are not invariant to changes in scale of variables

(e.g., it does matter whether weight data in matrix are measured in
pounds or kilograms)

3 PCA is a dimension reduction procedure
4 The PCs are linear combinations of the variables that comprise the

columns of the data matrix

debashis.ghosh@ucdenver.edu ML in Python and Spark

Utility of PCA

Implicitly, PCA assumes that the variables in the data are continuous
and can take any real value

In many situations, we do not have that

What are the situations in which PCA gives meaningful results?

debashis.ghosh@ucdenver.edu ML in Python and Spark

Gower (1966, Biometrika)

Work with the idea of a “distance” between objects:
We assume that we have the matrix X, which is n × p
View each row as a p−dimensional vector. Let x1, . . . , xn denote the
rows of X; these are the objects
Assume that the distance between xi and xj is given by

d(xi , xj) =

p∑
l=1

(xil − xjl)
2;

this is referred to as Euclidean distance

debashis.ghosh@ucdenver.edu ML in Python and Spark

Properties of distance

d : distance function/metric: takes as input two vectors and returns a
nonnegative scalar
For a proper distance metric d , we need the following properties to
hold:

1 d(x, x) = 0.
2 d(x, y) = d(y, x);
3 d(x, y) ≤ d(x, z) + d(z, y).

debashis.ghosh@ucdenver.edu ML in Python and Spark

A new interpretation of PCA

Consider a distance matrix Q = [qij], where

qij = d(xi , xj)

Create an association matrix A = [aij] that is n × n and whose i , jth
entry is computed by defining

aii = 0; aij = −q2ij/2.

Construct a matrix α = [αij] by

αij = aij − āi − āj + ā.

Perform PCA on α; this will give a set of points that provide the
closest “reconstruction” of the points in the original p−dimensional
space.

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA: remarks

The key feature that is needed is that α be a positive semi-definite
matrix.
This implies conditions on A and on Q.
Euclidean distance works fine with continuous variables that take
values (a, b) for any values of a and b, but it does NOT work with
discrete variables
For discrete variables, one should use a different metric. One example
is the Hamming distance. For two p−dimensional vectors xi and xj ,
this is given by

d(xi , xj) =

p∑
l=1

I (xil 6= xjl).

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA and latent factor models

So far, we have primarily motivated PCA as an algorithm with a
geometric and algorithmic interpretation

Is there a probabilistic model in which PCA is some type of estimator?

A special case of a so-called latent factor model

debashis.ghosh@ucdenver.edu ML in Python and Spark

Latent factor models

The formula for a latent factor is given by

x = µ+ Au + e,

where

µ is an unknown constant p × 1 vector (intercept term)
x is a p × 1 vector
u is a d × 1 vector of random variables
A is a p × d vector of unknown constants that relates x and u
e is the residual error term, also a vector of random variables

Interpretation: u provides a more parsimonious representation of the
data (i.e. fewer parameters/variables) when d < p.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Latent factor models (cont’d.)

Further assumptions:
1 u ∼ N(0, I), where I is d × d matrix
2 e ∼ N(0,Σ)
3 Implication of these distributional assumptions ⇒

x ∼ N(µ,AA′ + Σ)

Note: A is known up to an orthogonal matrix

Parameters of interest: µ, A, and Σ

debashis.ghosh@ucdenver.edu ML in Python and Spark

Latent factor models and PCA

Assume further that Σ = σ2I, where I is p × p

Tipping and Bishop (1999) show that the maximum likelihood
estimate (MLE) of A for a fixed σ2 is given by

Â = Up(Λp − σ2I)1/2R,

where
1 Up is a p × d matrix whose columns are the eigenvectors of S, the

empirical variance-covariance matrix of x
2 Λp is a p × p diagonal matrix of the eigenvalues of S
3 R is an arbitrary orthogonal matrix (take to equal I)

The MLE of σ2 is given by

σ̂2 =
1

p − d

p∑
j=d+1

λj ,

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ λd+1 ≥ · · ·λp are the eigenvalues
corresponding to S.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Latent factor models and PCA: remarks

PCA corresponds to situation where σ2 → 0; this is not really a
proper statistical model (imagine a linear regression model where
there is no stochastic component)
The major issue: choice of d ; this is analogous to selecting the
number of principal components
The goal of factor analysis is the same as PCA: dimension reduction
of multivariate data into a data-driven summary score that can be
used for further analyses

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA and SVD

Note that SVD is a special case of PCA

SVD generates a three matrix decomposition of a n × p matrix M

M = UDVT ,

where U is an n × n matrix with UTU = UUT = In
D is an n × p matrix with nonnegative numbers on the diagonal, and
V is a p × p with VTV = VVT = Ip

PCA: SVD of a square symmetric matrix

debashis.ghosh@ucdenver.edu ML in Python and Spark

PCA and SVD (cont’d.)

For big data, computing eigenvalues and eigenvectors becomes a
complicated problem

Spark uses a distributive algorithm (links to ARPACK,
http://www.caam.rice.edu/software/ARPACK/

Other options:
1 Create randomized matrices and perform computation on those
2 Idea: approximate original data matrix with a low-rank approximation

in a randomized manner; the randomized manner will speed up
computation

debashis.ghosh@ucdenver.edu ML in Python and Spark

Clustering: Intuition

A basic tool in data mining/pattern recognition:

Divide a set of data into groups.

Samples in one cluster are close and clusters are far apart.

Motivation:

Discover classes of data in an unsupervised way (unsupervised learning).
Efficient representation of data: fast retrieval, data complexity
reduction.
Various engineering purposes: tightly linked with pattern recognition.

debashis.ghosh@ucdenver.edu ML in Python and Spark

http://www.caam.rice.edu/software/ARPACK/

Approaches to Clustering

Represent samples by feature vectors.

Define a distance measure to assess the closeness between data.

“Closeness” can be measured in many ways.

Define distance based on various norms/metrics.

Multivariate distance – depends on the setting ⇒ The variables have
incompatible units and no prior known relationship. The result of
clustering will depends on the arbitrary choice of variable scaling.

Clustering: grouping of similar objects (unsupervised learning)

debashis.ghosh@ucdenver.edu ML in Python and Spark

Approaches to clustering (cont’d.)

Approaches
1 Prototype methods: K-means (for vectors), K-center (for vectors),

D2-clustering (for bags of weighted vectors)
2 Statistical modeling: mixture modeling by the EM algorithm, Modal

clustering
3 Pairwise distance based partition: Spectral graph partitioning,

Dendrogram clustering (agglomerative): single linkage (friends of
friends algorithm), complete linkage, etc.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Philosophies of Clustering

Parametric versus nonparametric

Probabilistic versus algorithmic

Pros and cons of each approach

With any method, must realize that a notion of distance is used.

debashis.ghosh@ucdenver.edu ML in Python and Spark

K-means

Assume there are M prototypes (observations) denoted by

Z = {z1, z2, ..., zM} .

Each training sample is assigned to one of the prototype. Denote the
assignment function by A(·). Then A(xi) = j means the ith training
sample is assigned to the jth prototype.

Goal: minimize the total mean squared error between the training
samples and their representative prototypes, that is, the trace of the
pooled within cluster covariance matrix.

arg min
Z,A

N∑
i=1

‖ xi − zA(xi) ‖
2

Denote the objective function by

L(Z,A) =
N∑
i=1

‖ xi − zA(xi) ‖
2 .

debashis.ghosh@ucdenver.edu ML in Python and Spark

Necessary Conditions

If Z is fixed, the optimal assignment function A(·) should follow the
nearest neighbor rule, that is,

A(xi) = arg minj∈{1,2,...,M} ‖ xi − zj ‖ .

If A(·) is fixed, the prototype zj should be the average (centroid) of
all the samples assigned to the jth prototype:

zj =

∑
i :A(xi)=j xi

Nj
,

where Nj is the number of samples assigned to prototype j .

debashis.ghosh@ucdenver.edu ML in Python and Spark

The Algorithm

Based on the necessary conditions, the k-means algorithm alternates
between the two steps:

For a fixed set of centroids (prototypes), optimize A(·) by assigning
each sample to its closest centroid using Euclidean distance.
Update the centroids by computing the average of all the samples
assigned to it.

The algorithm converges since after each iteration, the objective
function decreases (non-increasing).

Usually converges fast.

Stopping criterion: the ratio between the decrease and the objective
function is below a threshold.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Example

Training set: {1.2, 5.6, 3.7, 0.6, 0.1, 2.6}.
Apply k-means algorithm with 2 centroids, {z1, z2}.
Initialization: randomly pick z1 = 2, z2 = 5.

fixed update

2 {1.2, 0.6, 0.1, 2.6}
5 {5.6, 3.7}

{1.2, 0.6, 0.1, 2.6} 1.125
{5.6, 3.7} 4.65

1.125 {1.2, 0.6, 0.1, 2.6}
4.65 {5.6, 3.7}

The two prototypes are: z1 = 1.125, z2 = 4.65. The objective
function is L(Z,A) = 5.3125.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Example (cont’d.)

Initialization: randomly pick z1 = 0.8, z2 = 3.8.

fixed update

0.8 {1.2, 0.6, 0.1}
3.8 {5.6, 3.7, 2.6}

{1.2, 0.6, 0.1 } 0.633
{5.6, 3.7, 2.6 } 3.967

0.633 {1.2, 0.6, 0.1}
3.967 {5.6, 3.7, 2.6}

The two prototypes are: z1 = 0.633, z2 = 3.967. The objective
function is L(Z,A) = 5.2133.

Starting from different initial values, the k-means algorithm converges
to different local optimum.

It can be shown that {z1 = 0.633, z2 = 3.967} is the global optimal
solution.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Initialization

Randomly pick up the prototypes to start the k-means iteration.

Different initial prototypes may lead to different local optimal
solutions given by k-means.

Try different sets of initial prototypes, compare the objective function
at the end to choose the best solution.

When randomly select initial prototypes, better make sure no
prototype is out of the range of the entire data set.

Initialization in the above simulation:

Generated M random vectors with independent dimensions. For each
dimension, the feature is uniformly distributed in [−1, 1].
Linearly transform the jth feature, Zj , j = 1, 2, ..., p in each prototype
(a vector) by: Zjsj + mj , where sj is the sample standard deviation of
dimension j and mj is the sample mean of dimension j , both computed
using the training data.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Mixture Model-based Clustering

Each cluster is mathematically represented by a parametric
distribution. Examples: Gaussian (continuous), Poisson (discrete).

The entire data set is modeled by a mixture of these distributions.

An individual distribution used to model a specific cluster is often
referred to as a component distribution.

Suppose there are K components (clusters). Each component is a
Gaussian distribution parameterized by µk , Σk . Denote the data by
X, X ∈ Rd .

debashis.ghosh@ucdenver.edu ML in Python and Spark

Mixture Model-based Clustering (cont’d.)

The density of component k is

fk(x) = φ(x | µk ,Σk)

=
1√

(2π)d |Σk |
exp(
−(x− µk)tΣ−1k (x− µk)

2
) .

The prior probability (weight) of component k is ak . The mixture
density is:

f (x) =
K∑

k=1

ak fk(x) =
K∑

k=1

akφ(x | µk ,Σk) .

debashis.ghosh@ucdenver.edu ML in Python and Spark

Remarks

A mixture model with high likelihood tends to have the following
traits:

Component distributions have high “peaks” (data in one cluster are
tight)
The mixture model “covers” the data well (dominant patterns in the
data are captured by component distributions).

Advantages

Well-studied statistical inference techniques available.
Flexibility in choosing the component distributions.
Obtain a density estimation for each cluster.
A “soft” classification is available.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Mixture example

−8 −6 −4 −2 0 2 4 6 8
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

De
nsi

ty f
un

ctio
n o

f tw
o c

lus
ter

s

debashis.ghosh@ucdenver.edu ML in Python and Spark

Estimation and EM algorithm

The parameters are estimated by the maximum likelihood (ML)
criterion using the expectation-maximization (EM) algorithm.

The EM algorithm provides an iterative computation of maximum
likelihood estimation when the observed data are incomplete.

Incompleteness can be conceptual.

We need to estimate the distribution of X , in sample space X , but we
can only observe X indirectly through Y , in sample space Y.
In many cases, there is a mapping x → y(x) from X to Y, and x is
only known to lie in a subset of X , denoted by X (†), which is
determined by the equation y = y(x).

debashis.ghosh@ucdenver.edu ML in Python and Spark

Estimation and EM algorithm

The distribution of X is parameterized by a family of distributions
f (x | θ), with parameters θ ∈ Ω, on x . The distribution of y , g(y | θ)
is

g(y | θ) =

∫
X (†)

f (x | θ)dx .

The EM algorithm aims at finding a θ that maximizes g(y | θ) given
an observed y .

Introduce the function

Q(θ′ | θ) = E (log f (x | θ′) | y , θ) ,

that is, the expected value of log f (x | θ′) according to the conditional
distribution of x given y and parameter θ. The expectation is
assumed to exist for all pairs (θ′, θ). In particular, it is assumed that
f (x | θ) > 0 for θ ∈ Ω.

debashis.ghosh@ucdenver.edu ML in Python and Spark

EM algorithm iterations

E-step: Compute Q(θ | θ(p)).

M-step: Choose θ(p+1) to be a value of θ ∈ Ω that maximizes
Q(θ | θ(p)).

M-step is typically easy

This guarantees that the algorithm will converge to a local maximum

Same issue as K-means

Different initial values, see which one maximizes the likelihood

debashis.ghosh@ucdenver.edu ML in Python and Spark

EM for the Mixture of Normals

Observed data (incomplete): {x1, x2, ..., xn}, where n is the sample
size. Denote all the samples collectively by x.

Complete data: {(x1, y1), (x2, y2), ..., (xn, yn)}, where yi is the cluster
(component) identity of sample xi .

The collection of parameters, θ, includes: ak , µk , Σk , k = 1, 2, ...,K .

The likelihood function is:

L(x|θ) =
n∑

i=1

log

(
K∑

k=1

akφ(xi |µk ,Σk)

)
.

L(x|θ) is the objective function of the EM algorithm (maximize).
Numerical difficulty comes from the sum inside the log.

debashis.ghosh@ucdenver.edu ML in Python and Spark

EM for the Mixture of Normals (cont’d.)

The Q function is:

Q(θ∗|θ) = E

[
log

n∏
i=1

a′yiφ(xi | µ′yi ,Σ
′
yi

) | x, θ

]

= E

[
n∑

i=1

(
log(a′yi) + log φ(xi | µ′yi ,Σ

′
yi

)
| x, θ

]

=
n∑

i=1

E
[
log(a′yi) + log φ(xi | µ′yi ,Σ

′
yi

) | xi , θ
]
.

The last equality comes from the fact the samples are independent.

Note that when xi is given, only yi is random in the complete data
(xi , yi). Also yi only takes a finite number of values, i.e, cluster
identities 1 to K . The distribution of Y given X = xi is the posterior
probability of Y given X .

debashis.ghosh@ucdenver.edu ML in Python and Spark

EM for the Mixture of Normals (cont’d.)

Once posterior probabilities (E-step) are estimated, maximizers
(M-step) are easy to compute

1 Initialize parameters
2 E-step: Compute the posterior probabilities for all i = 1, ..., n,

k = 1, ...,K .

pi,k =
a
(p)
k φ(xi | µ(p)

k ,Σ
(p)
k)∑K

k=1 a
(p)
k φ(xi | µ(p)

k ,Σ
(p)
k)

.

3 M-step:

a
(p+1)
k = n−1

n∑
i=1

pi,k µ
(p+1)
k =

n∑
i=1

pi,kxi/
n∑

i=1

pi,k

Σ
(p+1)
k =

∑n
i=1 pi,k(xi − µ(p+1)

k)(xi − µ(p+1)
k)t∑n

i=1 pi,k

4 Repeat step 2 and 3 to convergence.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Remarks

One can use a model selection criteria like BIC to choose K ; it works
well empirically

In practice, we may want to reduce model complexity by putting
constraints on the parameters. For instance, assume equal priors,
identical covariance matrices for all the components.

If a different Σk is allowed for each component, the likelihood function
is not bounded. Global optimum is meaningless. (Don’t overdo it!)

Initializing group assignments: one approach is with k-means
1 Apply k-means first.
2 Initialize µk and Σk using all the samples classified to cluster k.
3 Initialize ak by the proportion of data assigned to cluster k by k-means.

debashis.ghosh@ucdenver.edu ML in Python and Spark

Clustering and Big Data

Many of the ideas can be adopted here

Distributed computing across nodes for E and M-step of the EM
algorithm or for k-means

Randomized directions of descent

debashis.ghosh@ucdenver.edu ML in Python and Spark

	01_Introduction
	02_Software_introduction
	03_Big_Data_Analytics
	04_seattlebd2016_handout

