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Introduction 

Health care analytics in the presence 
of big data: Case studies in Python and 

Apache Spark 
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Welcome! 

• Thank you to our hosts for allowing us the 
opportunity to give this workshop.  

 

• Thank you to the participants for your interest! 

 

• Let us introduce ourselves… 
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Debashis Ghosh 

• Professor and Chair, Department of Biostatistics 
and Informatics, ColoradoSPH 

• UW grad (yeah!) 

• Interests in: machine learning, causal inference, 
integrative genomics 

• Dabbler in big data/data science 

• After-work interests: reading, playing violin, 
running 
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Evan.Carey@va.gov 

• Work 
• Statistician / Data Scientist 

• 5 years working in large administrative datasets with 
Veterans Healthcare Administration 

• Coding 
• R, SAS, Python, SQL variants, Spark 

• Education 
• Masters of Science in Applied Biostatistics from CSPH 

• PhD Candidate in Epidemiology 

• Play 
• Tennis, Volleyball, drums   
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Big Data, right? 

• Can someone define big data for me? 

 

 

• When hear the phrase big data, what 
other words come to mind? 
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(Collaborative Filtering Algorithm) 

BIG 
DATA 

Hadoop 

The Cloud 

Distributed 
Computing 

SQL NoSQL 

Spark 

R breaks! 
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This new thing, big data  

• September 1994: BusinessWeek publishes a 
cover story on “Database Marketing” 

• An earlier flush of enthusiasm prompted by the 
spread of checkout scanners in the 1980s ended in 
widespread disappointment: Many companies were 
too overwhelmed by the sheer quantity of data to do 
anything useful with the information… Still, many 
companies believe they have no choice but to brave 
the database-marketing frontier.” 
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Knowledge discovery in databases 
• 1996 Usama Fayyad, Gregory Piatetsky-Shapiro, and Padhraic Smyth 

publish “From Data Mining to Knowledge Discovery in Databases.” They 
write:  

• “Historically, the notion of finding useful patterns in data has been 
given a variety of names, including data mining, knowledge extraction, 
information discovery, information harvesting, data archeology, and 
data pattern processing… In our view, KDD [Knowledge Discovery in 
Databases] refers to the overall process of discovering useful knowledge 
from data, and data mining refers to a particular step in this process.  
Data mining is the application of specific algorithms for extracting 
patterns from data… the additional steps in the KDD process, such as 
data preparation, data selection, data cleaning, incorporation of 
appropriate prior knowledge, and proper interpretation of the results of 
mining, are essential to ensure that useful knowledge is derived from 
the data. Blind application of data-mining methods (rightly criticized as 
data dredging in the statistical literature) can be a dangerous activity, 
easily leading to the discovery of meaningless and invalid patterns.” 
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The analytic process 

1 • Break R trying to import data 

2 
• Use the cloud and Hadoop to 

distribute something 

3 
• ?? 

4 
• Great analysis 

• (profit) 
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Bottom line. 

• How do I accomplish the analytic process I know (and 
love) in the presence of increasing dimensionality?  

Import Data EDA / Clean 
Fit 

Multivariate 
Methods 
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Reasonable questions 

• What software environment can I use in large 
data? 

• What is Hadoop, or Spark? 

• How can I store my data? 

• SQL versus NoSQL? 

• What statistical methods should I use on my 
data? 

• Is machine learning the answer? 

• What is machine learning…? 

 

 

01:     Introduction 2016 Slide: 12 

Course Objectives 
• Contextualize course with VM including Python, 

SQLite, Spark, and sample data.  
• Applied understanding of data science in Python 
• Applied understanding of data science in Apache 

Spark  
• Fully define a modeling approach 
• Evaluate the impact of big data on the analytic 

workflow  
• Contrast machine learning versus “frequentist” 

approaches 
• Focus on data management and a classification 

problem.  
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Software Introduction 

Health care analytics in the presence 
of big data: Case studies in Python and 

Apache Spark 
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Virtual Machine! 

• We have provided a virtual machine for this 
course: 

• Linux (CentOS7 Minimal install) 

• Anaconda Python Stack 

• Apache Spark  

• Sqlite 

• Some interesting datasets 

• This can be run with Virtualbox 

• 8GB RAM needed.  
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Data in the VM 

• Group Medical Cost/Claims 

• I included the PDF description of this data source in 
your VM. 

• Cost data for 1.6 million patients in the late 90’s.  

• I have cleaned/modified the data for ease of use.  

• Simulated_Cluster_Person 

• I simulated this dataset of 10k patients 

• Some intentional data issues 

• Binary outcome of interest.  
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Python for Analysis 

• We will be using the Anaconda Python 
Distribution, Python 3.5.XX 
• This has everything we need, is open source, and is 

easy to install.  

• This includes… 

• The python kernel 

• Ipython (enhanced interpreter) 

• Spyder (IDE) 

• Scientific Stack of libraries (packages) 

• We could build a Python stack from scratch, 
compiling all libraries we need…this is not trivial. 
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Python Analytics Packages 
• Ipython 

• Enhanced interpreter 

• Numpy 
• Matlab type stuff 
• Ndarray object 

• Matplotlib 
• Plotting in 2d originally (now some 3d) 

• Pandas 
• Dataframe class, time series analysis 

• Stat models 
• Frequentist multivariate approaches 

• Scikit learn 
• Machine learning 
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• The basic collection of objects in Python is a list 

• Make a list with square brackets.  

## This is a comment 

 

## Create a collection (list) of numbers 

x1 = [1,2,3,4] 

 

## Create a list of characters 

name = ['Evan','Debashis'] 

Basic Python 
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• We bring in additional functionality by importing 
modules.  

Use the import statement.  

import numpy as np 

import pandas as pd 

import matplotlib.pyplot as plt 

Importing modules 
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Python Analysis Overview 

Pandas • Import and clean data, EDA 

Patsy 
•Create model matrices 

(numpy objects) 

Numpy 
•Matrices as inputs to 

models 

Scikit-
learn 

•Pre-processing, Fit 
multivariate methods 
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Functional Examples 

• Lets work through some python code together.  

• All code is available on your virtual machine.  

• You should be able to run all the code and get a 
feel for the environment.  
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Big Data Analytics 

Health care analytics in the presence 
of big data: Case studies in Python and 

Apache Spark 
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Defining big data 

• Big Data Definition: 

• Data exceeds memory  

• Data exceeds hard drive on typical workstation 

• Data exceeds hard drive space on a single server 

 

• I typically define “big data” functionally…whenever 
my environment or analytic approach must be 
changed due to the size of the data I am working 
with.  
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Analytic process 

• What are the issues posed by high dimensionality 
data in the above process?  

Import Data EDA / Clean 
Fit 

Multivariate 
Methods 
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Possible issues 

• Data will not fit into… 

• RAM 

• Hard drive 

• Computations are too expensive  

• Algorithms take too long to converge 

• Algorithms fail to converge 

• Not enough memory to run algorithms! 
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Vertical Scaling 

• Not enough RAM 
• Buy more RAM 

• Spill to hard drive (Does R or Python do this?) 

• Not enough hard drive 
• Buy bigger hard drive 

• Won’t fit on desktop 
• Buy server! 

• Not enough server RAM 
• Upgrade server…? 

• Computations take too long 
• Get faster processor! 
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Horizontal Scaling 

• Out of RAM/Disk 
space 
• Use more 

computers! 

• Computations take 
too long 
• Distribute 

computations 
across multiple 
computers / threads 

• Parallel execution of 
tasks 
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Distributed Computing 

• Distributed Data 

• Data won’t fit in one place. 

• Need to break data into pieces and store across 
multiple nodes.  

 

• Distributed Computation 

• Computation is too expensive. 

• Gain overall efficiency by distributing computations 
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Distributed Data 

• What are some things we need in a distributed 
data model? 

• Fault Tolerance 

• Scalability 

• Storage (throughput) 

• Retrieval 

• Ease of analysis / merging data elements 
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Data Partitions 

• When we break data apart, we can intelligently 
partition the data according to future needs. 

• Partition by hospital ID 

• Partition by patient 

• Partition by interesting clusters… 

 

• This will allow subsequent processing efficiency 
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Approach #1: Store big, analyze small 

• Use a distributed data model to organize and 
keep large data 

• Analyze subsets of the data 

• Take a 2% sample of the data 

• Bring into R/Python 

• Proceed… 

• Analyze Summaries of the data 

• Reduce data with basic summary measures 

• Analyze summary measures 
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Relational Database (RDBMS) 

• Who knows what SQL/RDBMS is? 

 

• Structured Query Language (SQL) 

• Came out in 1970’s 

• Microsoft SQL Server 

• Oracle 

• MySQL 

• SQLite 
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NoSQL 

http://www.networkworld.com/article/2226514/tech-debates/what-s-better-
for-your-big-data-application--sql-or-nosql-.html 

• Can someone define NoSQL? 
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Not Only SQL (NoSQL) 

• Focus on Horizontal Scalability 

• Don’t need to fully define data elements before 
it is stored 

• No Complex schema requirements 

• Can collect many different types of data 

• High throughput 

• Simplest Example:  

• Key – Value pairs 

• JSON Databased 
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DBMS (SQL) Versus NoSQL 

DBMS 

• Fast Read Access 

• Long Load Time 

• Transaction level-
fault tolerance 

• Vertical 
Scalability 

NoSQL 

• Slower Random 
Read Access 

• High Throughput 

• Horizontal 
Scalability 
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Distributed Computations 

• Work on one piece of data at a time 

• Process chunk 

• Store result 

• Work on next chunk 

 

• What common data processing steps might not 
work well in this environment? 

 

• What are the newly incurred costs associated 
with this approach? 
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Serial Versus Parallel Computation 

Result 1 Result 2 Result 3 Result 4… 
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Apache Hadoop  

• What do you know about Hadoop?  

 

• How popular is it?  

 

• Advantages? 

 

• Disadvantages? 
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Apache Hadoop 
The Apache™ Hadoop® project develops open-source 
software for reliable, scalable, distributed computing. 

 

The Apache Hadoop software library is a framework that 
allows for the distributed processing of large data sets across 
clusters of computers using simple programming models. It is 
designed to scale up from single servers to thousands of 
machines, each offering local computation and storage. 
Rather than rely on hardware to deliver high-availability, the 
library itself is designed to detect and handle failures at the 
application layer, so delivering a highly-available service on 
top of a cluster of computers, each of which may be prone to 
failures. 
-From hadoop.apache.org 
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Hadoop 

• History: 
• Apache Project 

• 2004 – Google publishes Map-Reduce paper 

• Doug Cutting created Hadoop ~ 2006 

• Hadoop 0.1.0 released April 2006 

• 2009 – HDFS and Map-reduce designated separate 
sub-projects 

• 2010 – Apache Hive, Pig  

• 2012 – Hadoop 1.0 released 

• 2013 – October – Hadoop 2.2 released 

• 2015 – Hadoop 2.7 released 
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Hadoop 

H
A

D
O

O
P

 Distributed Data (File system) 

HDFS 

Distributed Analysis 

MapReduce  
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Hadoop part 1: Data Storage 

• Distributed data file system 

• Hadoop Distributed File System (HDFS) 

• Written in Java 

• Data is replicated across Clusters (fault tolerance) 

• Data is split by key-value pairs and stored in different 
nodes 

• This is a high-throughput, but high latency system 
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Hadoop Distributed File System 

• Advantages 

• Highly scalable – just add more hardware 

• Scales “linearly” with hardware addition 

• Store big data across multiple nodes 

• Fault detection and recovery 

 

• Disadvantages 

• Write once, read many times 

• Bad for mutable data 

• High latency for data retrieval 

• Analysis of data requires use of map-reduce framework 
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Hadoop part 2: Data Processing 
• Distributed Data Processing: MapReduce 
• Map-reduce is the programming approach that allows the 

scalability and parallel nature of Hadoop 
• Map 

• This step selects and subsets values, then returns them as a 
key and value pair. This is the intermediate key-value pair 
object 

• Reduce 
• This step receives the key-value object from Map,  using the 

keys to collate all values with identical keys. We define some 
set of functions to each key sub-group and return the result as 
a key-value pair. 

• Original Google Publication: 
• http://research.google.com/archive/mapreduce.html 
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MapReduce Analytics 

• Advantages of Hadoop: 
• Scalable to thousands of nodes 

• We can do analysis on datasets too large for memory 

• Once programming in map-reduce is written, it is 
automatically scaled with more nodes 

• Disadvantages of Hadoop: 
• Map-reduce has overhead costs that exist no matter 

how small the data is. 

• Interactive analysis is difficult 

• Map-reduce programming is difficult, and requires us 
to explicitly make algorithms parallel 
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Related Hadoop Projects 

• Apache Pig 

• High-level platform to interface with HDFS 

• Uses “pig-latin” 

• Requests are translated to map-reduce jobs 

 

• Apache Hive 

• Data warehouse 

• SQL esque interface, Hive Query Language (HQL) 

• HQL is translated to map-reduce jobs 

• JDBC Drivers are available 
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Related Hadoop Projects 

• Apache Hbase 

• NoSQL database modeled after Google’s BigTable 

• Overcomes some HDFS limitations of random read 

• This is a key-value store that sites on top of HDFS 

• Requires a custom language to learn 
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Dream Software 

• Distributed data model with enough structure to 
make interactive use easy. 

• Dataframe like object native to the software 

• Fast. 

• Designed with data analysis and statistical 
frameworks in mind.  
• I don’t want to hard code a correlation algorithm…I want 

to call the cor() function! 

• Don’t want to learn yet another language to use it.  
• Should have a few API options analysts already know. 

• Free! Umm, I mean Open source! 

03:     Big Data Analytics 2016 Slide: 28 

Apache Spark 

• “Apache Spark is a fast and general-purpose 
cluster computing system.” – Spark Homepage 

 

• Developed at UC Berkely AMPLab 

• Donated to Apache Foundation, now part of the 
Hadoop ecosystem 

 

• Often associated with Hadoop, but  truly distinct 
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Apache Spark History 

• 2009 
• Started by Matei Zaharia at UC Berkley AMPLab 

• 2012 – Version 0.5.1 

• 2013  
• Version 0.8.1 

• Donated to Apache Software Foundation 

• 2014 
• Version 1.0 

• 2016 
• Version 2.0 
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Spark 
• Distributed Data Structures 

• Resilient Distributed Dataset(RDD) 
• Not so much structure  

• Dataset/Dataframe 
• Newly added functionality  
• More structure to make data optimizations 

 

• Speed 
• Spark is significantly faster than Hadoop  
• Spark operates in memory when possible 
• Spark reduces the number of read/write cycles compared 

to MapReduce 
• Spark =/= MapReduce 
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Spark Build 

• Spark can be built on top of Hadoop 

• Uses the YARN resources manager 

• Alternatively, uses the MapReduce  

 

• Spark can also be run in standalone mode 

• Uses HDFS, but does not use the Hadoop Resource 
Manager 
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Spark 

• Analytics 
• Spark has an SQL interface  

• Spark also has a machine learning library 

• GraphX 

• Spark Streaming 

 

• API’s 
• Native Code in Scala 

• Java 

• Python 

• R 
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Basic Example: Logistic regression

Let Y ∈ {0, 1} denote the response

Let X denote the covariates

Model:
logit{P(Y = 1|X)} = α + X′β,

where logit(u) = log{u/(1− u)} and (α, β) are the regression
coefficients
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Logistic regression (cont’d.)

Estimation approaches
1 Maximum likelihood
2 Method of moments
3 Robust estimation
4 Penalized/Bayes procedures

These will define the loss function to be used
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Logistic regression (cont’d.)

We also need an algorithm for estimation
1 Newton-Raphson (Fisher scoring)
2 Simulation-based
3 Markov Chain Monte Carlo
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Logistic regression (cont’d.)

This example, while simple, illustrates key points about modeling:
1 Give a model specification
2 Propose a means for estimation
3 Use an algorithm for estimation
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Big Data Paradigm

Focus on the algorithm

Many of the computations we are “used to making” become
infeasible for a variety of reasons

1 Data can’t be stored on one server
2 Matrices become too big to work with

Big data requires a revisit and reexploration of our “standard”
algorithms in which we determine techniques to make them scalable.

However, that does not mean forget about specification and
estimation!
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Logistic regression revisited

“Standard” estimation approach: maximum likelihood with
Newton-Raphson

This is equivalent to an iteratively reweighted least squares algorithm

This requires matrix inversion and matrix multiplication, which can be
computationally infeasible
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Logistic regression

One approach to make this scalable: use gradient descent algorithm

Such an algorithm corresponds to adopting an L1 penalty for β

This yields the following penalized log-likelihood:

n∑
i=1

Yi log pi (α, β) + (1− Yi ) log{1− pi (α, β)}+ λ(|α|+
p∑

j=1

|βj |),

where λ ≥ 0 is a smoothing parameter and

pi (α, β) =
exp(α + X′β)

1 + exp(α + X′β)
,

i = 1, . . . , n.
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Model specification

Several types of categorizations:
1 Y |X (prospective) versus X|Y (retrospective)
2 Y |X or X|Y (discriminative) versus (X,Y ) (generative)

Associated properties
1 Distributional family for Y (e.g., binomial distribution for logistic

regression)
2 Link function
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Formulation as optimization problem

Typically, statisticians have worked with maximum likelihood
estimation

Attractive properties:
1 Assume exponential family with “proper” parameter space: equivalent

to maximizing a convex function over a convex set ⇒ maximizer
(MLE) will be a global optimizer
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Formulation as optimization problem (cont’d.)

Machine learning: Kuhn-Karush-Tucker (KKT) theory

Formulate as an optimization problem subject to equality and
inequality constraints

Generic formulation: Maximize

f (x)

subject to gi (x) ≤ 0 (i = 1, . . . , I ) and hj(x) = 0, j = 1, . . . , J

Equivalently expressed as minimize

f (x) +
I∑

i=1

λigi (x) +
J∑

j=1

λ∗j hj(x)
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Formulation as optimization problem (cont’d.)

KKT necessary conditions for finding a global optimum:
1 Stationary conditions (first derivative equals zero)
2 Feasibility: at optimum, inequality and equality constraints are satisfied
3 Complementary slackness: at optimum, λigi (x

∗) = 0
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Formulation as optimization problem (cont’d.)

KKT sufficient conditions for finding a global optimum: f is an invex
function (generalization of convex): there exists a vector-valued
function g(x , u) such that

f (x)− f (u) ≥ g(x , u) · ∇f (u)

for all x , u, where ∇f denotes the gradient of f
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Example of KKT (Liu et al., 2007)

Formulate a semiparametric linear model for a continuous y :

yi = β0 + xi
Tβ + h(zi ) + ei

where i = 1, . . . , n,
xi = (xi1, . . . , xiq)T ,
zi = (zi1, . . . , zip)T

β = (β1, . . . , βq)T

h(zi ) = unknown smooth nonparametric function, where
h ∈ H=some functional space,
e ∼ N(0, σ2I ).
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Liu et al., 2007, continued

Estimate β and h(·) by minimizing the penalized sum of squares:

n∑
i=1

{yi − (β0 + xi
Tβ + h(zi ))}2 + λ‖h‖2H

This is a standard penalized likelihood problem

Standard approach: take H to be a reproducing kernel Hilbert space
(Wahba, 1990)
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Liu et al., 2007, continued

Primal formulation:

min 1
2

∑n
i=1 e

2
i + 1

2λ‖ω‖
2

s.t. ei = yi − {β0 + xi
Tβ + φ(zi )

Tω}

for i = 1, . . . , n
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Liu et al., 2007, continued

Introduce the Lagrangian multiplier (dual parameters) γ and form the
Lagrangian function

L(ω,β, e;γ) =

1

2

n∑
i=1

e2i +
1

2
λ‖ω‖2−

n∑
i=1

γi{β0 + xi
Tβ + φ(zi )

Tω + ei − yi}

The dimension of γ = n (low dimension).

The dual formulation is obtained by removing the high dimensional
parameters ω and writing L(ω,β, e;γ) as a function of dual
parameters γ and β alone.
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Liu et al., 2007, continued

Optimality conditions
∇ωL = ′ → ω = 1

λ

∑n
i=1 γiφ(zi )

∂L
∂ei

= 0 → ei = γi
∇βL = ′ →

∑n
i=1 γixi = 0

∂L
∂γ i

= 0 → xi
Tβ + φ(zi )

Tω + ei − yi = 0
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Liu et al., 2007, continued

The dual formulation is obtained by substituting ω̂ and ê into the last
equation:{

yi − xi
Tβ − 1

λ

∑n
i ′=1 γi ′φ(zi )

Tφ(zi ′)− γ i = 0∑n
i=1 γixi = 0

Estimation in the dual formulation is low dimensional.

The estimator ĥ(z) = λ−1
∑n

i=1 γ̂iφ(z)Tφ(zi ).

Computation of γ̂ and ĥ(z) hence only requires evaluating the kernel
function

k(z , z ′) =< φ(z),φ(z ′) >= φ(z)Tφ(z ′).

This is referred to as a kernel method (visit later)
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Optimization

Most machine learners phrase modelling as an optimization problem
with constraints as in prior example

For most problems, this will correspond to a loss function

L(β) =
n∑

i=1

l(Yi ,Xi , β)
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Optimization (cont’d.)

Examples
1 l(Yi ,Xi , β) = (Yi − Xiβ)2 (quadratic loss)
2 l(Yi ,Xi , β) = |Yi − Xiβ|ε, where

|u|ε=

{
u2/2, |u|< ε

ε(|u|−ε/2), else

This is Huber loss
3 If Y is binary,

l(Yi ,Xi , β) ≡ Yi logP(Yi = 1|Xi ) + (1− Yi ) logP(Yi = 0|Xi )

is the binomial likelihood
4 Other losses are possible (e.g., hinge loss for support vector machines,

boosting, etc.)
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Optimization (cont’d.)

For several reasons, machine learners penalize the loss function

Reasons
1 Numerical stability
2 Allow for nonlinearities
3 Expand set of available big-data scalable algorithms
4 Leads to better generalizability

Amounts to minimizing

L(β) + λP(β)

where λ > 0 is a smoothing parameter and P(β) is the penalty term
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Choices for P(β)

Take P(β) to be an L1 constraint on the regression coefficients; this
is commonly referred to as LASSO (least absolute selection and
shrinkage operator)

Perform LASSO of Y on X by solving:

n∑
i=1

l(Yi ,Xi , β) s.t.

p∑
j=1

|βj |≤ t, (1)

where β are unknown regression coefficients, and t ≥ 0 is a
smoothing parameter.

Has the property of exactly estimating certain coefficients to be
zero ⇒ automated feature selection
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LASSO: Some theory

Statisticians have explored when this type of procedure leads to
consistent model selection

Sufficient conditions
1 The irrelevant variables cannot be too correlated with the true variables
2 Subgaussian tails for the random variables

Key is that this is a penalty and lead to improved prediction on new
datasets.
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Ridge regression

Take P(β) to be an L2 constraint on the regression coefficients; this
is commonly referred to as ridge regression(least absolute selection
and shrinkage operator)

Perform LASSO of Y on X by solving:

n∑
i=1

l(Yi ,Xi , β) s.t.

p∑
j=1

β2j ≤ t, (2)

where β are unknown regression coefficients, and t ≥ 0 is a
smoothing parameter.

Has the property of shrinking correlated features towards zero but
not estimating any coefficients to be exactly zero
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Comparison of LASSO and ridge regression
http://bit.ly/2dXxw7y
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Penalized Regression

Compromise of Ridge and LASSO: Elastic Net (Zou et al., 2005),
which minimizes

n∑
i=1

l(Yi ,Xi , β) + λ1

p∑
j=1

|βj |+λ2
p∑

j=1

β2j (3)

where λ1, λ2 ≥ 0 are smoothing parameters

Has the effect of performing (a) automatic grouping of correlated
predictors and (b) variable selection.
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Optimization Algorithms

Many standard algorithms in statistical procedures are sequential

Generically, this means that computation at iteration t + 1 requires
saving output from iteration t as well as data

For big data, this might not be efficient from either a computational
or storage point of view

Sequential algorithms in general do not scale
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Big Data Optimization Techniques

Active area of research

Some proposed solutions:
1 Randomization
2 Distributed algorithms
3 Asynchronous algorithms
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Randomization

Classical example: gradient descent

Goal: minimize f (w), where w ∈ Rd

find a local minimum of a function by iteratively taking steps in the
direction of steepest descent

Finding the direction of steepest descent can be computationally
unscalable for big datasets

One solution: pick a descent direction at random and compute the
gradient

Iterate this to convergence
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Stochastic Gradient Descent

Works well with penalization problems of the form

λP(β) +
n∑

i=1

l(Yi ,Xi , β)

Pick one observation from random

Compute subgradient with respect to data point (inexact gradient)

Move objective function in the direction of the negative subgradient
with respect ot data point

Cheap computations
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Distributed Algorithms

Make use of a parallel computing environment

Take task and have several nodes run the task in parallel

Two issues that complicate these algorithms:
1 Communication: nodes talking to each other
2 Synchronization: nodes must be coordinated in performing parallel

tasks
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Distributed Algorithms (cont’d.)

Separable functions like

n∑
i=1

l(Yi ,Xi , β)

are amenable to distributed algorithms (embarassingly parallel)

Have a node dedicated to some parameters and only compute the
gradient for those

Alternative: asynchronous computations
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Spark: an aside

Main abstraction in Spark is that of a resilient distributed dataset
(RDD), which represents a read-only collection of objects partitioned
across a set of machines that can be rebuilt if a partition is lost
(lineage)

written in Scala, a typed high-level programming language for the
Java VM

Can “parallelize” a Scala collection (e.g., an array) in the driver
program, which means dividing it into a number of slices that will be
sent to multiple nodes

Can perform distributed versions of SGD
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Support vector machines

• Suppose that we have two groups of observations

• Intuition behind SVMs: find the separating hyperplane that maximizes
the margin between two groups and perfectly classifies observations

• margin: distance between the hyperplane and points

• Sometimes to achieve perfect classification, slack variables are
introduced into the problem, along with a regularization parameter C
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SVM: 2-D representation (from Jaggi, 2013)
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SVM

SVM primal optimization:

min
w,b
‖w‖2

subject to Yi (w · Xi − b) ≥ 1, i = 1, . . . , n.

1/‖w‖ is proportional to the margin, so can reexpress as maximizing
the margin

SVM dual formulation:

max
α

n∑
i=1

αi −
1

2

n∑
i ,j=1

αiαjYiYj < Xi ,Xj >

subject to αi ≥ 0 (i = 1, . . . , n) and
∑n

i=1 αiYi = 0 where < ·, · >
denotes inner product
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SVM: remarks

Typically, the dual SVM problem has been simpler to solve, as it is a
quadratic programming problem

Not necessarily the case with big data

SVM can be cast in the loss function framework as

n∑
i=1

|1− Yi f (Xi )|++λP(f )

where |u|+= max(u, 0) and P(f ) is a penalty on f .
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SVM: optmization

Typically done using a sequential minimization optimization (SMO)
algorithm

With big data, SMO is not usable because of storage issues

An alternative is to use stochastic gradient descent, which is what is
implemented in Spark for linear kernel
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Decision trees

Decision tree is a greedy algorithm that performs a recursive binary
partitioning of the feature space.

Also referred to as classification and regression trees in the literature

MLlib 1.2 adds several features for scaling up to larger (deeper) trees
and tree ensembles

Big concern: overfitting

Inherently, decision trees are unstable classifiers
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Random Forests

Ensemble of decision trees

By averaging unstable classifiers, we have a more stable prediction
algorithm

In Spark, these are fit using randomized approach
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Dimensionality reduction methods

Principal components analysis (PCA)

Singular value decomposition (SVD)

These are unsupervised methods
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PCA: background

Goals of PCA

1 Geometry: Find a new coordinate system obtained by rotating the
original system with X1, . . . ,Xp as the coordinate axes, where the new
axes represent the directions with maximum variability and provide a
simpler and more parsimonious description of the covariance structure.

2 Optimization: Find the set of uncorrelated linear combinations of
variables that explain the greatest amount of variability of variables
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Variance-Covariance matrix: review

Let X ≡ (X1 X2 · · · Xp)
′

denote a p × 1 vector
Then the (population) variance-covariance matrix is

Σ = [σij ]i ,j=1,...,p,

where σij = E [(Xi − µi )(Xj − µj)], and µi is the mean of Xi .
Now variance is a p × p matrix, and what summarizes the variability
are p points, each of which is a p−dimensional vector.
Note that Σ will be symmetric
If the distribution for Y is nondegenerate, then Σ will also be positive
definite (i.e., all eigenvalues of Σ are positive)
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PCA

principal components (PCs): the linear combinations of (X1, ...,Xp)
that are uncorrelated and for which

Var(a′iX) = ai
′Σai , i = 1, . . . , p

is as large as possible.
Statistical goal: Determine a1, . . . , ap.
By definition, a′iaj = 0 for i 6= j
Also add in the constraint that a′iai = 1 for i = 1, . . . , p.
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PC Definition

First PC: linear combination a′1X that maximizes Var(a′1X) subject to
a′1a1 = 1.

Second PC: linear combination a′2Y that maximizes Var(a′2X) subject
to a′2a2 = 1 and Cov(a′1X, a′2X) = 0.

In general, ith PC: linear combination a′iX that maximizes Var(a′iX)
subject to a′iai = 1 and Cov(a′iY, a

′
jX) = 0 for j = 1, 2, . . . , i − 1.

The solution to this optimization problem is given by the
eigenvalue/eigenvectors of Σ.
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Sample estimator of a covariance matrix

Let x1, . . . , xn be a random sample of p−dimensional vectors

Then the sample covariance matrix estimator is given by

S =
1

n − 1

n∑
i=1

(xi − x̄)(xi − x̄)
′
,

where x̄ = n−1
∑n

i=1 xi .

Alternatively, S = [sij ], i , j = 1, . . . , p, where

sij =
1

n − 1

n∑
k=1

(xki − x̄i )(xkj − x̄j),

where x̄i and x̄j are the ith and jth component of x̄

The diagonals of S: sample variances

The off-diagonals of S: sample covariances
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Sample PCA

Algorithm:

Estimates of population PCs obtained by calculating the eigenvectors
of S, sorted from largest to smallest eigenvalue

Estimate of ai (ith PC): eigenvector of S corresponding to to ith
largest eigenvalue, i = 1, . . . , p. Note: the estimated eigenvalues
λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p ≥ 0.

Proportion of total population variance of X explained by the ith PC
is estimated by

λ̂i∑p
j=1 λ̂j

.
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PCA: number of components

Major question: how many PCs to use in analysis

Statistically, this is a hard problem

Some old solutions: do a series of hypothesis tests on eigenvalues,
testing H0 : λi = λi+1 versus HA : λi > λi + 1

Old theory based on asymptotics and multivariate normality of
original data

A more robust solution: bootstrap and get CIs for λ

A more practical solution: choose number of PCs so that variability
explained is 80− 90%
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Scree plot

A plot of eigenvalues of S in decreasing order.

By looking for an elbow (bend) in the scree plot, we can determine
the number of PCs.

A visual test for number of PCs
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More about Principal Components Analysis (PCA)

Recall:
1 PCA results are different based on whether or not sample covariance or

sample correlation matrix is used
2 More generally, results are not invariant to changes in scale of variables

(e.g., it does matter whether weight data in matrix are measured in
pounds or kilograms)

3 PCA is a dimension reduction procedure
4 The PCs are linear combinations of the variables that comprise the

columns of the data matrix
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Utility of PCA

Implicitly, PCA assumes that the variables in the data are continuous
and can take any real value

In many situations, we do not have that

What are the situations in which PCA gives meaningful results?
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Gower (1966, Biometrika)

Work with the idea of a “distance” between objects:
We assume that we have the matrix X, which is n × p
View each row as a p−dimensional vector. Let x1, . . . , xn denote the
rows of X; these are the objects
Assume that the distance between xi and xj is given by

d(xi , xj) =

p∑
l=1

(xil − xjl)
2;

this is referred to as Euclidean distance
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Properties of distance

d : distance function/metric: takes as input two vectors and returns a
nonnegative scalar
For a proper distance metric d , we need the following properties to
hold:

1 d(x, x) = 0.
2 d(x, y) = d(y, x);
3 d(x, y) ≤ d(x, z) + d(z, y).
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A new interpretation of PCA

Consider a distance matrix Q = [qij ], where

qij = d(xi , xj)

Create an association matrix A = [aij ] that is n × n and whose i , jth
entry is computed by defining

aii = 0; aij = −q2ij/2.

Construct a matrix α = [αij ] by

αij = aij − āi − āj + ā.

Perform PCA on α; this will give a set of points that provide the
closest “reconstruction” of the points in the original p−dimensional
space.
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PCA: remarks

The key feature that is needed is that α be a positive semi-definite
matrix.
This implies conditions on A and on Q.
Euclidean distance works fine with continuous variables that take
values (a, b) for any values of a and b, but it does NOT work with
discrete variables
For discrete variables, one should use a different metric. One example
is the Hamming distance. For two p−dimensional vectors xi and xj ,
this is given by

d(xi , xj) =

p∑
l=1

I (xil 6= xjl).
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PCA and latent factor models

So far, we have primarily motivated PCA as an algorithm with a
geometric and algorithmic interpretation

Is there a probabilistic model in which PCA is some type of estimator?

A special case of a so-called latent factor model
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Latent factor models

The formula for a latent factor is given by

x = µ+ Au + e,

where

µ is an unknown constant p × 1 vector (intercept term)
x is a p × 1 vector
u is a d × 1 vector of random variables
A is a p × d vector of unknown constants that relates x and u
e is the residual error term, also a vector of random variables

Interpretation: u provides a more parsimonious representation of the
data (i.e. fewer parameters/variables) when d < p.
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Latent factor models (cont’d.)

Further assumptions:
1 u ∼ N(0, I), where I is d × d matrix
2 e ∼ N(0,Σ)
3 Implication of these distributional assumptions ⇒

x ∼ N(µ,AA′ + Σ)

Note: A is known up to an orthogonal matrix

Parameters of interest: µ, A, and Σ
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Latent factor models and PCA

Assume further that Σ = σ2I, where I is p × p

Tipping and Bishop (1999) show that the maximum likelihood
estimate (MLE) of A for a fixed σ2 is given by

Â = Up(Λp − σ2I)1/2R,

where
1 Up is a p × d matrix whose columns are the eigenvectors of S, the

empirical variance-covariance matrix of x
2 Λp is a p × p diagonal matrix of the eigenvalues of S
3 R is an arbitrary orthogonal matrix (take to equal I)

The MLE of σ2 is given by

σ̂2 =
1

p − d

p∑
j=d+1

λj ,

where λ1 ≥ λ2 ≥ · · · ≥ λd ≥ λd+1 ≥ · · ·λp are the eigenvalues
corresponding to S.
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Latent factor models and PCA: remarks

PCA corresponds to situation where σ2 → 0; this is not really a
proper statistical model (imagine a linear regression model where
there is no stochastic component)
The major issue: choice of d ; this is analogous to selecting the
number of principal components
The goal of factor analysis is the same as PCA: dimension reduction
of multivariate data into a data-driven summary score that can be
used for further analyses
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PCA and SVD

Note that SVD is a special case of PCA

SVD generates a three matrix decomposition of a n × p matrix M

M = UDVT ,

where U is an n × n matrix with UTU = UUT = In
D is an n × p matrix with nonnegative numbers on the diagonal, and
V is a p × p with VTV = VVT = Ip

PCA: SVD of a square symmetric matrix
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PCA and SVD (cont’d.)

For big data, computing eigenvalues and eigenvectors becomes a
complicated problem

Spark uses a distributive algorithm (links to ARPACK,
http://www.caam.rice.edu/software/ARPACK/

Other options:
1 Create randomized matrices and perform computation on those
2 Idea: approximate original data matrix with a low-rank approximation

in a randomized manner; the randomized manner will speed up
computation
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Clustering: Intuition

A basic tool in data mining/pattern recognition:

Divide a set of data into groups.

Samples in one cluster are close and clusters are far apart.

Motivation:

Discover classes of data in an unsupervised way (unsupervised learning).
Efficient representation of data: fast retrieval, data complexity
reduction.
Various engineering purposes: tightly linked with pattern recognition.
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Approaches to Clustering

Represent samples by feature vectors.

Define a distance measure to assess the closeness between data.

“Closeness” can be measured in many ways.

Define distance based on various norms/metrics.

Multivariate distance – depends on the setting ⇒ The variables have
incompatible units and no prior known relationship. The result of
clustering will depends on the arbitrary choice of variable scaling.

Clustering: grouping of similar objects (unsupervised learning)
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Approaches to clustering (cont’d.)

Approaches
1 Prototype methods: K-means (for vectors), K-center (for vectors),

D2-clustering (for bags of weighted vectors)
2 Statistical modeling: mixture modeling by the EM algorithm, Modal

clustering
3 Pairwise distance based partition: Spectral graph partitioning,

Dendrogram clustering (agglomerative): single linkage (friends of
friends algorithm), complete linkage, etc.
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Philosophies of Clustering

Parametric versus nonparametric

Probabilistic versus algorithmic

Pros and cons of each approach

With any method, must realize that a notion of distance is used.
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K-means

Assume there are M prototypes (observations) denoted by

Z = {z1, z2, ..., zM} .

Each training sample is assigned to one of the prototype. Denote the
assignment function by A(·). Then A(xi ) = j means the ith training
sample is assigned to the jth prototype.

Goal: minimize the total mean squared error between the training
samples and their representative prototypes, that is, the trace of the
pooled within cluster covariance matrix.

arg min
Z,A

N∑
i=1

‖ xi − zA(xi ) ‖
2

Denote the objective function by

L(Z,A) =
N∑
i=1

‖ xi − zA(xi ) ‖
2 .
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Necessary Conditions

If Z is fixed, the optimal assignment function A(·) should follow the
nearest neighbor rule, that is,

A(xi ) = arg minj∈{1,2,...,M} ‖ xi − zj ‖ .

If A(·) is fixed, the prototype zj should be the average (centroid) of
all the samples assigned to the jth prototype:

zj =

∑
i :A(xi )=j xi

Nj
,

where Nj is the number of samples assigned to prototype j .
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The Algorithm

Based on the necessary conditions, the k-means algorithm alternates
between the two steps:

For a fixed set of centroids (prototypes), optimize A(·) by assigning
each sample to its closest centroid using Euclidean distance.
Update the centroids by computing the average of all the samples
assigned to it.

The algorithm converges since after each iteration, the objective
function decreases (non-increasing).

Usually converges fast.

Stopping criterion: the ratio between the decrease and the objective
function is below a threshold.
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Example

Training set: {1.2, 5.6, 3.7, 0.6, 0.1, 2.6}.
Apply k-means algorithm with 2 centroids, {z1, z2}.
Initialization: randomly pick z1 = 2, z2 = 5.

fixed update

2 {1.2, 0.6, 0.1, 2.6}
5 {5.6, 3.7}

{1.2, 0.6, 0.1, 2.6} 1.125
{5.6, 3.7} 4.65

1.125 {1.2, 0.6, 0.1, 2.6}
4.65 {5.6, 3.7}

The two prototypes are: z1 = 1.125, z2 = 4.65. The objective
function is L(Z,A) = 5.3125.
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Example (cont’d.)

Initialization: randomly pick z1 = 0.8, z2 = 3.8.

fixed update

0.8 {1.2, 0.6, 0.1}
3.8 {5.6, 3.7, 2.6}

{1.2, 0.6, 0.1 } 0.633
{5.6, 3.7, 2.6 } 3.967

0.633 {1.2, 0.6, 0.1}
3.967 {5.6, 3.7, 2.6}

The two prototypes are: z1 = 0.633, z2 = 3.967. The objective
function is L(Z,A) = 5.2133.

Starting from different initial values, the k-means algorithm converges
to different local optimum.

It can be shown that {z1 = 0.633, z2 = 3.967} is the global optimal
solution.
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Initialization

Randomly pick up the prototypes to start the k-means iteration.

Different initial prototypes may lead to different local optimal
solutions given by k-means.

Try different sets of initial prototypes, compare the objective function
at the end to choose the best solution.

When randomly select initial prototypes, better make sure no
prototype is out of the range of the entire data set.

Initialization in the above simulation:

Generated M random vectors with independent dimensions. For each
dimension, the feature is uniformly distributed in [−1, 1].
Linearly transform the jth feature, Zj , j = 1, 2, ..., p in each prototype
(a vector) by: Zjsj + mj , where sj is the sample standard deviation of
dimension j and mj is the sample mean of dimension j , both computed
using the training data.
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Mixture Model-based Clustering

Each cluster is mathematically represented by a parametric
distribution. Examples: Gaussian (continuous), Poisson (discrete).

The entire data set is modeled by a mixture of these distributions.

An individual distribution used to model a specific cluster is often
referred to as a component distribution.

Suppose there are K components (clusters). Each component is a
Gaussian distribution parameterized by µk , Σk . Denote the data by
X, X ∈ Rd .
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Mixture Model-based Clustering (cont’d.)

The density of component k is

fk(x) = φ(x | µk ,Σk)

=
1√

(2π)d |Σk |
exp(
−(x− µk)tΣ−1k (x− µk)

2
) .

The prior probability (weight) of component k is ak . The mixture
density is:

f (x) =
K∑

k=1

ak fk(x) =
K∑

k=1

akφ(x | µk ,Σk) .
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Remarks

A mixture model with high likelihood tends to have the following
traits:

Component distributions have high “peaks” (data in one cluster are
tight)
The mixture model “covers” the data well (dominant patterns in the
data are captured by component distributions).

Advantages

Well-studied statistical inference techniques available.
Flexibility in choosing the component distributions.
Obtain a density estimation for each cluster.
A “soft” classification is available.
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Mixture example
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Estimation and EM algorithm

The parameters are estimated by the maximum likelihood (ML)
criterion using the expectation-maximization (EM) algorithm.

The EM algorithm provides an iterative computation of maximum
likelihood estimation when the observed data are incomplete.

Incompleteness can be conceptual.

We need to estimate the distribution of X , in sample space X , but we
can only observe X indirectly through Y , in sample space Y.
In many cases, there is a mapping x → y(x) from X to Y, and x is
only known to lie in a subset of X , denoted by X (†), which is
determined by the equation y = y(x).
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Estimation and EM algorithm

The distribution of X is parameterized by a family of distributions
f (x | θ), with parameters θ ∈ Ω, on x . The distribution of y , g(y | θ)
is

g(y | θ) =

∫
X (†)

f (x | θ)dx .

The EM algorithm aims at finding a θ that maximizes g(y | θ) given
an observed y .

Introduce the function

Q(θ′ | θ) = E (log f (x | θ′) | y , θ) ,

that is, the expected value of log f (x | θ′) according to the conditional
distribution of x given y and parameter θ. The expectation is
assumed to exist for all pairs (θ′, θ). In particular, it is assumed that
f (x | θ) > 0 for θ ∈ Ω.
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EM algorithm iterations

E-step: Compute Q(θ | θ(p)).

M-step: Choose θ(p+1) to be a value of θ ∈ Ω that maximizes
Q(θ | θ(p)).

M-step is typically easy

This guarantees that the algorithm will converge to a local maximum

Same issue as K-means

Different initial values, see which one maximizes the likelihood
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EM for the Mixture of Normals

Observed data (incomplete): {x1, x2, ..., xn}, where n is the sample
size. Denote all the samples collectively by x.

Complete data: {(x1, y1), (x2, y2), ..., (xn, yn)}, where yi is the cluster
(component) identity of sample xi .

The collection of parameters, θ, includes: ak , µk , Σk , k = 1, 2, ...,K .

The likelihood function is:

L(x|θ) =
n∑

i=1

log

(
K∑

k=1

akφ(xi |µk ,Σk)

)
.

L(x|θ) is the objective function of the EM algorithm (maximize).
Numerical difficulty comes from the sum inside the log.
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EM for the Mixture of Normals (cont’d.)

The Q function is:

Q(θ∗|θ) = E

[
log

n∏
i=1

a′yiφ(xi | µ′yi ,Σ
′
yi

) | x, θ

]

= E

[
n∑

i=1

(
log(a′yi ) + log φ(xi | µ′yi ,Σ

′
yi

)
| x, θ

]

=
n∑

i=1

E
[
log(a′yi ) + log φ(xi | µ′yi ,Σ

′
yi

) | xi , θ
]
.

The last equality comes from the fact the samples are independent.

Note that when xi is given, only yi is random in the complete data
(xi , yi ). Also yi only takes a finite number of values, i.e, cluster
identities 1 to K . The distribution of Y given X = xi is the posterior
probability of Y given X .
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EM for the Mixture of Normals (cont’d.)

Once posterior probabilities (E-step) are estimated, maximizers
(M-step) are easy to compute

1 Initialize parameters
2 E-step: Compute the posterior probabilities for all i = 1, ..., n,

k = 1, ...,K .

pi,k =
a
(p)
k φ(xi | µ(p)

k ,Σ
(p)
k )∑K

k=1 a
(p)
k φ(xi | µ(p)

k ,Σ
(p)
k )

.

3 M-step:

a
(p+1)
k = n−1

n∑
i=1

pi,k µ
(p+1)
k =

n∑
i=1

pi,kxi/
n∑

i=1

pi,k

Σ
(p+1)
k =

∑n
i=1 pi,k(xi − µ(p+1)

k )(xi − µ(p+1)
k )t∑n

i=1 pi,k

4 Repeat step 2 and 3 to convergence.
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Remarks

One can use a model selection criteria like BIC to choose K ; it works
well empirically

In practice, we may want to reduce model complexity by putting
constraints on the parameters. For instance, assume equal priors,
identical covariance matrices for all the components.

If a different Σk is allowed for each component, the likelihood function
is not bounded. Global optimum is meaningless. (Don’t overdo it!)

Initializing group assignments: one approach is with k-means
1 Apply k-means first.
2 Initialize µk and Σk using all the samples classified to cluster k.
3 Initialize ak by the proportion of data assigned to cluster k by k-means.
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Clustering and Big Data

Many of the ideas can be adopted here

Distributed computing across nodes for E and M-step of the EM
algorithm or for k-means

Randomized directions of descent
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