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Learning from Data

= Requirements for learning from data
= A clear question

= Knowledge about the data generating experiment
= A straightforward, relevant, interpretable result

= Core concepts in Targeted Learning

= A (statistical) model represents (statistical) knowledge about the data
generating experiment

= Target parameter defined as a feature of the data generating
distribution

= Efficient, data adaptive estimation + statistical inference
= Super Learning

= Targeted minimum loss-based estimation (TMLE)
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Traditional Approach to Analyzing Health Care Data

O Fit several parametric logistic regression models and choose one
@ Report point estimate of coefficient in front of treatment, p-value and

confidence interval as if this parametric model was pre-specified

= But consider,
= The parametric model is misspecified
= The coefficient is interpreted as if the parametric model is correct

= The model selection procedure is not accounted for in the estimated
variance
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Targeted Learning

= Targeted Learning provides a paradigm for transforming data into
reliable, actionable knowledge

= Define targeted parameter to address a relevant scientific question,
not for convenience

= Avoid reliance on human art and unrealistic parametric models: a
priori specified estimator.

= Target the fit of data-generating distribution to the target parameter
of interest

= Valid statistical inference in terms of a normal limiting distribution
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Examples of Targeted Learning Toolbox

= Prediction and classification

= Targeted effect estimation
= Effects of static or dynamic treatments

= Direct and indirect effects (mediation analysis)
= Parameters of marginal structural models
= Variable importance measures

= Types of data
= Point treatment

= Longitudinal/Repeated Measures
= Censoring/Missingness/Time-dependent confounding
= Case-Control

= Randomized clinical trials and observational data

2nd Seattle Symposium, October, 23, 2016 Targeted Learning



Estimation Roadmap

Step 1.

Define a statistical model, M, that contains the true probability

distribution

Step 2.

Step 3.

Step 4.

Step 5.

of the data, Py.

Define the target parameter of interest, 1){/, as a feature of a full
data distribution, Pg“”.

Specify a mapping from the full data to observed data, and
W : M — IR? such that under explicitly stated identifying
assumptions Y = W(Py).

Estimation and inference of statistical parameter 1o = W(Pp)
using super learning and targeted minimum loss based estimation.

Provide a considered interpretation of the result.
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Super Learning - Motivation

Both effect and prediction research questions are inherently estimation
questions, but they are distinct in their goals.

Effect: Interested in estimating the effect of exposure on outcome
adjusted for covariates.

Prediction: Interested in generating a function to input covariates and
predict a value for the outcome.

Effect parameters where no causal assumptions are made may be referred
to as variable importance measures (VIMs).
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Traditional Approach

Estimation using (misspecified) Parametric Models
= Data ni.i.d. copies of O = (Y, A, W)
= Qutcome Y, Treatment A, Covariates W
= Standard practice for prediction and effect estimation

= assume a parametric statistical model for Eo(Y | A, W),
the conditional mean of Y given A and W

= use maximum likelihood estimation (MLE) to estimate model
parameters

= Parametric regression models
= varying levels of complexity

= choice of variables included in model impacts complexity
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High Dimensional Data

= Potentially thousands of candidate variables to include in the model

= Model complexity can increase exponentially, more unknown
parameters than observations

= The true functional for Eo(Y | A, W) might be complex, beyond main
terms and interaction terms.

= Correct specification is a challenge
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The Complications of Human Art in Traditional Practice

= The moment we use post-hoc arbitrary criteria and human
judgment to select the parametric statistical model after looking at
the data, the analysis becomes prone to additional bias.

= Bias manifests in both the effect estimate and the assessment of
uncertainty (i.e., standard errors).

= So why not simply use a purely non-parametric model with high
dimensional data?

= p>nl
= data sparsity
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Super Learning - Motivation

= What we want is an automated algorithm to semi-parametrically
estimate Eo(Y | A, W).
= Opportunity to reduce bias due to model misspecification

= Opportunity to reduce variance by improving the fit for the dependent
variable

= Many potential algorithms.
= We cannot bet on a misspecified parametric regression,

= Many semi-parametric methods that aim to “smooth" the data and
estimate this regression function.

= Yet one particular algorithm is going to do better than the other
candidate estimators.

= How to know which one to use?
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The Dangers of Favoritism

* Relative Mean Squared Error (compared
to main terms least squares regression)
based on the validation sample

Method ___|Study1 | Study2
Least Squares 1.00 1.00 1.00 1.00
LARS 0.91 0.95 1.00 0.91

D/SIA 0.22 0.95 1.04

Ridge 0.96 0.9 1.02 0.98

Random 0.39 1.18 0.71

Forest

MARS 0.82 @ 0.61
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Super Learning in Prediction

Method | Study1__|Study2 _|Study3 _|Study4 | Overall |

Least 1.00
Squares

LARS 0.91
DISIA 0.22
Ridge 0.96

Random 0.39
Forest

MARS 0.02

Super 0.02 0.67

Learner
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Super Learning - Core Concepts

= Loss Based Estimation
= We will use loss functions to define the best estimator of
Eo(Y | A, W) from a library of algorithms, and then evaluate it.
= Cross Validation
= Qur available data is partitioned to train and validate our estimators.

= Semi-Parametric Estimation

= Allow the data to drive your estimates, but in an honest (cross
validated) way.
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Loss-Based Estimation

= Data structure O = (W, A,Y) ~ Py

= empirical distribution P, places probability 1/n on each observed O;,
i=1,...,n.

= Goal is to estimate conditional mean outcome, Qy = Eo(Y | A, W)
= Specify a library of learning algorithms

= “Best” algorithm is with respect to a loss function, L.
L:(0,Q)— L(0,Q) eR

= [ assigns a measure of performance to a candidate function @ when
applied to an observation O.

= [ is a function of the random variable O and parameter value Q.
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Loss-Based Estimation

Examples of loss functions

= [, absolute error loss function:
L(0, Q) =Y = Q(A, W),
= L, squared error (or quadratic) loss function:
L(0,Q) = (Y — Q(A,W))?,
= Negative log loss function:

L(O, Q) = —log(Q(A, W)Y (1 — Q(A, W)'™ ™).
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Loss-Based Estimation

= Squared error loss: L(O, Q) = (Y — Q(A, W))?
» Expected squared error loss EgL(O, Q) is also known as risk

= Risk evaluates candidate @
= Small risk is better

= Risk is minimized at the optimal choice of (_?0

= Define our parameter of interest, Qo = Eo(Y | A, W), as the
minimizer of the risk:

Qo = arg mingEoL(O, Q).
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Cross-Validation

Cross-validation to obtain an accurate estimate of risk

= Partitions the sample of n observations Oy, ..., O, into training and
corresponding validation sets.

= Produces an accurate estimate of risk

= Discrete super learner: selects "best” algorithm with smallest risk
among a library of algorithms

= We can also use cross-validation to evaluate the overall performance
of the super learner itself.
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V-fold Cross-Validation

= Observed data Oy, ...

learning set.

= Learning set is partitioned into V sets of size

~ N

= For each fold, V — 1 sets will comprise the

, O, is referred to as the

training set. The remaining set is the

validation set.

= Observations in the training set are used to
construct (or train) the candidate estimators.

= Observations in the validation set are used to

evaluate risk

T

Learning 5
Set

Fold 1

Training
Set

NMValidation

Set
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V-fold Cross-Validation

9 9 9 9 9 9 9 9 9
- 10 10 10 10 10 10 10 10 10

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10

The validation set rotates V times such that each set is used as the
validation set once.
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Discrete Super Learner

= Suppose a researcher cannot decide between three different statistical
methodologies for estimating Eo(Y | A, W)

= SL library consists of (MLE, Deletion/Substitution/Addition (DSA),
Random Forest)

= Discrete SL chooses the one with the smallest (honest)
cross-validated risk.

Method CV-Risk
MLE 0.30
DSA 0.04

Random Forest 0.23

Which algorithm does the discrete super learner pick?
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Oracle Properties

= The Oracle selector is the best estimator among the K algorithms in
the SL library

= Chooses the algorithm whose fit on the training samples yields the
smallest risk under Py, the true probability distribution of random
variable O.

= Unknown, since it depends on both observed data and Py.

= Discrete super learner performs as well as the Oracle selector, up to a
second order term.
= assuming a bounded loss function

= number of algorithms in the library polynomial in sample size

= That is, ratio of loss-based dissimilarities for oracle selected estimator
and cross-validated selected estimator w.r.t. truth converges to 1!
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Ensemble Super Learner

= Ensemble super learner improves upon discrete super learning by
enlarging set of candidate estimators.
= Define the SL library as all weighted averages of individual algorithms

= Each weighted average is a unique candidate algorithm in this
augmented library.

= One of these weighted combinations might perform better than any
single algorithm

= Each individual algorithm remains a candidate

= Cross-validation guides the selection of the optimal weighted
combination

= Ensemble SL is no more computer intensive than discrete SL
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Ensemble Super Learner: How it works

Once the discrete super learner has been completed,

= Propose a family of weighted combinations of library algorithms,
indexed by weight vector a.

= consider only a-vectors that sum to one, where each weight is
non-negative

= Determine which combination minimizes the cross-validated risk
P,,(Y =1 | Z) = expit (Oéanl + 0427,722 +...+ OLK,,,ZK)

= Cross-validated predictions (Z) for each algorithm are inputs in a
working (statistical) model to predict the outcome Y.

= SL prediction is a weighted combination of predictions from
algorithms fit on the entire dataset. Given n x k prediction matrix Z’,

Qu(AW) =Za,
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SL: Finite sample performance

Four simulated datasets (n = 100)
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Fig. 2, Polley and van der Laan, 2010
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SL: ICU Mortality Prediction

Cross-validated Area under the Receiver-Operating Curve

= Sepsis-related Organ Failure Assessment (SOFA)
= Simplified Acute Physiology Score (SAPS-II)

= Acute Physiology and Chronic Health Evalution

Sensitivity (true positives)

o4 AuRoc (APACHE)
—— 071 First SOFA
— 078 SAPS-Il
0 T ognmeer | ™ Super Learner, standard categorized variables
ot (SL1)
é U‘Z 0‘4 0‘6 U‘B 1‘0
pecity (e posiies) = Super Learner, non-transformed variables (SL2)

Figure 1: Receiver-operating characteristics curves

Pirracchio, et al, Lancet, 2014

= SL better distinguishes between high and low risk patients
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The Bottom Line

= There is no point in painstakingly trying to decide what estimators to
enter in the collection; instead add them all.

= The theory supports this approach and finite sample simulations and
data analyses only confirm that it is very hard to over-fit the super
learner by augmenting the collection, but benefits are obtained.

= Indeed, for large data sets, we simply do not have enough algorithms
available to build the desired collection that would fully utilize the
power of the super learning.
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Super Learning Demonstration

= Superlearner R package (CRAN and GitHub)
= Using the package

= Practical considerations
= Algorithms for the SL library

= Loss function
= Dimension Reduction

= How to choose V
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