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Course Outline

= Partl

= Targeted Learning Overview
= Estimation Roadmap

= Super Learning

= Part 2
= Targeted Minimium Loss-Based Estimation (TMLE)

= Part 3
= TMLE for longitudinal data analysis

= Concluding Remarks
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Estimation is a Science, Not an Art

= Data: Realizations of random variables with probability distribution P

Statistical Model (M): Actual knowledge about the shape of Py

Statistical Target Parameter: A feature/function of Py

= Estimator
= Algorithm for mapping from data to a (d-dimensional) real number

= Benchmarked by a dissimilarity measure (e.g., MSE) w.r.t. target
parameter
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Causal Inf ce

= Under non-testable assumptions Py can be described in terms of an
underlying parameter varying over an underlying parameter space

= e.g., intervention-specific counterfactuals

= Parameter space described by a full data model such as a
nonparametric structural equation model (NPSEM)

= Non-testable assumptions enrich the interpretation of the statistical
target parameter
= Model = Statistical Model + Untestable Assumptions

= Allows identification of full data parameters and causal quantities

= Defintion of statistical target parameter is clear. Causal interpretation
when assumptions are met

= Statistical estimation is concerned only with statistical model
and statistical target parameter
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Example: TMLE for the ATE parameter

Marginal additive effect of a binary point treatment (ATE) parameter
= Data: ni.i.d. observations O = (Y, A, W) ~ Py

outcome Y, binary treatment indicator A, covariate vector W

= NPSEM

W = fw(Uw)
A= 1fa(W,Ua)
Y = fY(WaAa UY)
where Uy, Ua, Uy are uncorrelated exogenous random errors

= Target Parameter: 8\ = Eo(Y1 — Yo)

= Y, is counterfactual outcome generated under NPSEM with A set to a
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A Substitution Estimator

= Target parameter ¢ is a feature of Py
= 1) can be expressed as a mapping, V(P)

= 1) is sometimes a feature of only a portion of Py denoted by @
L ThUS, ‘-U(Qo) = ‘-U(P())

= A substitution estimator applies the target parameter mapping
directly to an estimate of relevent component

= @, is an estimator of @ that conforms to statistical model M

= Substitution estimator can be represented as mapping v, = V(Q,).

= Use of a substitution estimator enhances robustness by respecting
bounds on both M and g
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TMLE for the ATE parameter

Likelihood factorizes

L(O)=P(Y|A W) PA|W)PW)
Qy g Qw

= Define
QO - (Q0y7 QOW)
go = Po(A| W)

= When causal assumptions are met

tho = EOVI/[EO(Y | A=1, W) - EO(Y | A=0, W)]
=k, [Qoy(lv W) — QOY(()? W)}

Otherwise, g remains a useful measure of variable importance
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Motivation for TMLE

= Super Learner (SL) for estimating Qo

= Sl-based subsitution estimator evaluates ¢35 = W(Q,)

= TMLE fluctuates initial @, to obtain targeted Q}

= Targeting makes use of information in Py beyond @ to improve
estimation of g

= Provides an opportunity to
= reduce asymptotic bias if initial @, not consistent

= reduce finite sample bias

= reduce variance
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Pathwise Differentiable Parameter

= Pathwise derivative for a path {P(¢) : ¢} € M through P at e =0 is
defined by LW(P(e))|e=o

= If for all paths through P this derivative can be represented as
P(D*(P)S) = | D(P)(0)S(0)dP(o).

where S is the score of the path at e =0,
and D*(P) is an element of tangent space at P,

then
= the target parameter mapping is pathwise differentiable at P

= its canonical gradient (i.e., efficient influence curve), is D*(P)
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Efficient Influence Curve Equation

= An estimator is asymptotically efficient if and only if it is asymptotically
linear with influence curve the efficient influence curve D*(Py):

= to = 30 D' (PO)(0) + op (}>

= An efficient regular asymptotically linear estimator will need to solve the
efficient influence curve equation ). D*(P)(O;) = 0 (up to second order
term)

= TMLE is a double robust semi-parametric efficient RAL substitution
estimator that can be applied to estimate any pathwise differential
parameter of Pg.
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Targeted Minimum Loss-Based Estimation

= TMLE Procedure

@ Identify the “hardest” parametric submodel to fluctuate initial P
Small fluctuation — maximum change in target

@ Identify optimal magnitude of fluctuation by MLE
© Apply optimal fluctuation to P to obtain 1st-step TMLE

© Repeat until incremental fluctuation is zero
= 1-step convergence guaranteed in some important cases

@ Final probability distribution solves efficient influence curve equation
= basis for asymptotic linearity, normality, and efficiency.

= confers double robustness, or, more general, makes bias a second order
term.

= Asymptotically efficient when initial and treatment/censoring
mechanism estimators are both consistent

= Allows incorporation of machine learning while preserving inference
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TMLE Algorithm

= Step 1: Obtain initial estimate
QUA, W) = E(Y | A W)
= Step 2: Target initial estimate (logit scale)
Qn (A W) = Q)(A, W) + ehg, (A, W)
= Estimate go(A, W) (propensity score)
= Construct parameter-specific fluctuation covariate, e..g,

jare _[__A 1-A

& gn(]-vW) gn(Oa W)

= Maximum likelihood to fit €

= Evaluate parameter: w,TMLE = \U(C_?,";)
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Efficient Influence Curve for ATE

TMLE solves P,D*(P;) =0
= Efficient influence curve for ATE parameter

spy= A 1-ATry ¢ e _ -
D'(P) = |~ sy LY - QAW + 20 w) - g0 w) -
b
a

= Stage 2 targeting fits € by maximum likelihood
= MLE solves score equation >, hg, (Ai, Wi)[Yi — Qx(A;, W;)] =0

= We define parameter-specific h, to ensure that the empirical mean of a
equals 0.

= As a substitution estimator ¢ ME = 1 57 Q= (1, W;) — Qx(0, W),
thus empirical mean of b equals 0.
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Inference

= Asymptotic Linearity
V(M — 1) 2 N(0,0%)
95% confidence intervals
Un(Qp) £1.966/+/n
62 = 1521, D*(P;)(0)

= Test statistic for null hypothesis Hy: 19 =0
n

82/n

T =

= p-values are calculated as 2®(—abs(T))
® = CDF of standard normal distribution
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Effect of Steroids on Mortality in Adults with Septic Shock

= Patient-level data from three major randomized controlled trials*
= Conflicting results among the three studies

= Using TMLE + SL to estimate RR of mortality (steroid vs. placebo)
= Reduced variance

= Power to estimate significant heterogeneous subgroup effects

overall

subgroup 1

[ T T T T T T 1
0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Relative Risk of 28-Day Mortality among Sepsis Patients

*Pirracchio, et. al. under review
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Simulation Study: ATE parameter estimation

= TMLE and C-TMLE compared with ordinary least squares and seven other
double robust estimators

= Challenges: Misspecified outcome regression, correct propensity score model
produces near positivity violations

= TMLE and C-TMLE were least biased and had smallest variance

Distribution of Bias in ATE Estimates
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Porter, Gruber, Sekhon, and van der Laan. The International Journal of Biostatistics, 2011.
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Additional topics

= Point treatment parameters
= Relative risk, odds ratio, risk difference

= Mean outcome under missingness in the population
= Effect of treatment among the treated (ATT)
= Controlled direct effects
= Marginal structural model parameters
= Case-control and other biased sampling techniques

= Addressing common challenges in data analysis

= Near positivity violations (poor overlap): Collaborative TMLE
(C-TMLE) for data-adaptive nuisance parameter estimation

= TMLE for bounded continuous outcomes

= TMLE for rare outcomes
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TMLE Demonstration

= tmle R package (CRAN)

= Using the package
= Examples taken from: S. Gruber and MJ van der Laan.tmle: An R Package

for Targeted Maximum Likelihood Estimation. Journal of Statistical Software
2012; 51(13)

= Practical Considerations
= Setting bounds on @
= Truncation level for g

= Examining results
= Summary

= Obtaining untargeted parameter estimates
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