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Course Outline

• Part 1
• Targeted Learning Overview
• Estimation Roadmap
• Super Learning

• Part 2
• Targeted Minimium Loss-Based Estimation (TMLE)

• Part 3
• TMLE for longitudinal data analysis
• Concluding Remarks
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Estimation is a Science, Not an Art

• Data: Realizations of random variables with probability distribution P0

• Statistical Model (M): Actual knowledge about the shape of P0

• Statistical Target Parameter: A feature/function of P0

• Estimator
• Algorithm for mapping from data to a (d-dimensional) real number
• Benchmarked by a dissimilarity measure (e.g., MSE) w.r.t. target

parameter
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Causal Inference

• Under non-testable assumptions P0 can be described in terms of an
underlying parameter varying over an underlying parameter space

• e.g., intervention-specific counterfactuals
• Parameter space described by a full data model such as a

nonparametric structural equation model (NPSEM)
• Non-testable assumptions enrich the interpretation of the statistical

target parameter
• Model = Statistical Model + Untestable Assumptions
• Allows identification of full data parameters and causal quantities
• Defintion of statistical target parameter is clear. Causal interpretation

when assumptions are met

• Statistical estimation is concerned only with statistical model
and statistical target parameter
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Example: TMLE for the ATE parameter

Marginal additive effect of a binary point treatment (ATE) parameter

• Data: n i.i.d. observations O = (Y ,A,W ) ∼ P0
outcome Y , binary treatment indicator A, covariate vector W

• NPSEM

W = fW (UW )
A = fA(W ,UA)
Y = fY (W ,A,UY )

where UW ,UA,UY are uncorrelated exogenous random errors

• Target Parameter: ψATE
0 = E0(Y1 − Y0)

• Ya is counterfactual outcome generated under NPSEM with A set to a
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A Substitution Estimator

• Target parameter ψ0 is a feature of P0
• ψ can be expressed as a mapping, Ψ(P0)
• ψ is sometimes a feature of only a portion of P0 denoted by Q0

• Thus, Ψ(Q0) = Ψ(P0)
• A substitution estimator applies the target parameter mapping

directly to an estimate of relevent component
• Qn is an estimator of Q0 that conforms to statistical modelM
• Substitution estimator can be represented as mapping ψn = Ψ(Qn).

• Use of a substitution estimator enhances robustness by respecting
bounds on bothM and ψ0
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TMLE for the ATE parameter

• Likelihood factorizes
L(O) = P(Y | A,W )︸ ︷︷ ︸

QY

P(A |W )︸ ︷︷ ︸
g

P(W )︸ ︷︷ ︸
QW

• Define
Q0 = (Q0Y ,Q0W )
g0 = P0(A |W )

• When causal assumptions are met

ψ0 = E0W [E0(Y | A = 1,W )− E0(Y | A = 0,W )]
= E0W

[
Q̄0Y (1,W )− Q̄0Y (0,W )

]
• Otherwise, ψ0 remains a useful measure of variable importance
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Motivation for TMLE

• Super Learner (SL) for estimating Q0

• SL-based subsitution estimator evaluates ψSL
n = Ψ(Qn)

• TMLE fluctuates initial Qn to obtain targeted Q∗
n

• Targeting makes use of information in P0 beyond Q0 to improve
estimation of ψ0

• Provides an opportunity to
• reduce asymptotic bias if initial Qn not consistent

• reduce finite sample bias

• reduce variance
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Pathwise Differentiable Parameter

• Pathwise derivative for a path {P(ε) : ε} ⊂ M through P at ε = 0 is
defined by d

dεΨ(P(ε))|ε=0

• If for all paths through P this derivative can be represented as

P(D∗(P)S) ≡
∫

D∗(P)(o)S(o)dP(o),

where S is the score of the path at ε = 0 ,
and D∗(P) is an element of tangent space at P,

then
• the target parameter mapping is pathwise differentiable at P
• its canonical gradient (i.e., efficient influence curve), is D∗(P)
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Efficient Influence Curve Equation

• An estimator is asymptotically efficient if and only if it is asymptotically
linear with influence curve the efficient influence curve D∗(P0):

ψn − ψ0 = 1
n
∑

D∗(P0)(Oi ) + oP

(
1√
n

)
• An efficient regular asymptotically linear estimator will need to solve the

efficient influence curve equation
∑

i D∗(P)(Oi ) = 0 (up to second order
term)

• TMLE is a double robust semi-parametric efficient RAL substitution
estimator that can be applied to estimate any pathwise differential
parameter of P0.
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This chapter focuses on understanding targeted maximum likelihood estimation.
Recall that TMLE is a two-step procedure where one first obtains an estimate

of the data-generating distribution P0, or the relevant portion Q0 of P0. The sec-
ond stage updates this initial fit in a step targeted towards making an optimal bias-
variance trade-off for the parameter of interest Ψ (Q0), instead of the overall density
P0. The procedure is double robust and can incorporate data-adaptive likelihood
based estimation procedures to estimate Q0 and the treatment mechanism. The dou-
ble robustness of TMLE has important implications in both randomized controlled
trials and observational studies, with potential reductions in bias and gains in effi-
ciency.
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Targeted Minimum Loss-Based Estimation

• TMLE Procedure
1 Identify the “hardest” parametric submodel to fluctuate initial P̂

Small fluctuation → maximum change in target
2 Identify optimal magnitude of fluctuation by MLE
3 Apply optimal fluctuation to P̂ to obtain 1st-step TMLE
4 Repeat until incremental fluctuation is zero

• 1-step convergence guaranteed in some important cases
5 Final probability distribution solves efficient influence curve equation

• basis for asymptotic linearity, normality, and efficiency.

• confers double robustness, or, more general, makes bias a second order
term.

• Asymptotically efficient when initial and treatment/censoring
mechanism estimators are both consistent

• Allows incorporation of machine learning while preserving inference
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TMLE Algorithm

• Step 1: Obtain initial estimate

Q̄0
n(A,W ) = Ê (Y | A,W )

• Step 2: Target initial estimate (logit scale)

Q̄∗
n (A,W ) = Q̄0

n(A,W ) + ε̂hgn (A,W )

• Estimate g0(A,W ) (propensity score)
• Construct parameter-specific fluctuation covariate, e..g,

hATE
gn

=
[

A
gn(1,W ) −

1− A
gn(0,W )

]
• Maximum likelihood to fit ε

• Evaluate parameter: ψTMLE
n = Ψ(Q̄∗

n)
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Efficient Influence Curve for ATE

TMLE solves PnD∗(P∗
n ) = 0

• Efficient influence curve for ATE parameter

D∗(P) =
[ A

g(1,W )
−

1 − A
g(0,W )

] [
Y − Q̄(A,W )

]
︸ ︷︷ ︸

a

+ Q̄(1,W ) − Q̄(0,W ) − ψ︸ ︷︷ ︸
b

• Stage 2 targeting fits ε by maximum likelihood
• MLE solves score equation

∑
i hgn (Ai ,Wi )[Yi − Q̄∗

n (Ai ,Wi )] = 0
• We define parameter-specific hg to ensure that the empirical mean of a

equals 0.

• As a substitution estimator ψTMLE
n = 1

n
∑

i Q̄∗
n(1,Wi )− Q̄∗

n(0,Wi ),
thus empirical mean of b equals 0.
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Inference

• Asymptotic Linearity
√

n(ψTMLE
n − ψ0) D→ N(0, σ2)

• 95% confidence intervals
ψn(Q∗

n)± 1.96 σ̂/
√

n

σ̂2 = 1
n
∑n

i=1 D̂∗2(P∗
n )(Oi )

• Test statistic for null hypothesis H0: ψ0 = 0

T = ψn√
σ̂2/n

• p-values are calculated as 2Φ(−abs(T ))
Φ = CDF of standard normal distribution
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Effect of Steroids on Mortality in Adults with Septic Shock

• Patient-level data from three major randomized controlled trials∗

• Conflicting results among the three studies
• Using TMLE + SL to estimate RR of mortality (steroid vs. placebo)

• Reduced variance
• Power to estimate significant heterogeneous subgroup effects

0.6 0.7 0.8 0.9 1.0 1.1 1.2 1.3

Relative Risk of 28-Day Mortality among Sepsis Patients

overall

subgroup 1

subgroup 2

∗Pirracchio, et. al. under review
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Simulation Study: ATE parameter estimation

• TMLE and C-TMLE compared with ordinary least squares and seven other
double robust estimators

• Challenges: Misspecified outcome regression, correct propensity score model
produces near positivity violations

• TMLE and C-TMLE were least biased and had smallest variance

Distribution of Bias in ATE Estimates
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Porter, Gruber, Sekhon, and van der Laan. The International Journal of Biostatistics, 2011.
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Additional topics

• Point treatment parameters
• Relative risk, odds ratio, risk difference
• Mean outcome under missingness in the population
• Effect of treatment among the treated (ATT)
• Controlled direct effects
• Marginal structural model parameters

• Case-control and other biased sampling techniques
• Addressing common challenges in data analysis

• Near positivity violations (poor overlap): Collaborative TMLE
(C-TMLE) for data-adaptive nuisance parameter estimation

• TMLE for bounded continuous outcomes
• TMLE for rare outcomes
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TMLE Demonstration

• tmle R package (CRAN)
• Using the package

• Examples taken from: S. Gruber and MJ van der Laan.tmle: An R Package
for Targeted Maximum Likelihood Estimation. Journal of Statistical Software
2012; 51(13)

• Practical Considerations
• Setting bounds on Q
• Truncation level for g
• Examining results

• Summary

• Obtaining untargeted parameter estimates
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