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Course Outline

• Part 1
• Targeted Learning Overview
• Estimation Roadmap
• Super Learning

• Part 2
• Targeted Minimium Loss-Based Estimation (TMLE)

• Part 3
• TMLE for longitudinal data analysis
• Concluding Remarks
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TMLE for Longitudinal Data Analysis

• Goal: Assess Impact of Treament at Multiple Timepoints
• Longitudinal Data (K time points)

L0 A0 . . . LK AK LK+1

Covariate and Outcome nodes (L0, . . . , LK+1)

Intervention nodes (A0, . . . ,AK ) indicate treatment and censoring
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Challenges to Analyzing Longitudinal Data

• Common default approach
• View as time-to-event data
• Impose a Cox Proportional Hazards Model

• However
• Hazard ratio may not be the most relevant target parameter
• Cox model is misspecified
• Cox PH model ignores informative right censoring
• Time-dependent Cox model does not appropriately handle time-varying

covariates affected by prior treatment

• Longitudinal TMLEs appropriately address these challenges
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Statistical Estimation Problem

• Data: n i.i.d. copies
O =

(
L0,A0, . . . , LK ,AK ,Y = LK+1

)
∼ P0

• Statistical Model: M
Collection of possible probability distributions of O

• Target Parameter: E (Yā)
Mean outcome under specified intervention ā =(a0, . . . , aK )

• Mapping: Ψ :M→ IR, such that Ψ(Pā) = E (Yā)
(Pā) is post-intervention distribution identified by G-computation formula
when causal assumptions are met

Note: contrasts (e.g. ATE, RR, RD) are functions of intervention-specific means
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Factorization of Likelihood

• Probability distribution P0 of O factorizes according to time-ordering
as

P0(O) =
K+1∏
k=0

P0 [Lk | Pa(Lk)]
K∏

k=0
P0 [Ak | Pa(Ak)]

≡
K+1∏
k=0

Q0,Lk (O)
K∏

k=0
g0,Ak (O)

≡ Q0g0

where Pa(Lk) ≡ (L̄k−1, Q̄k−1) and Pa(Ak) ≡ (L̄k , Āk−1) denote
parents of Lk and Ak in the time-ordered sequence, respectively

• g0-factor represents the intervention mechanism, e.g., treatment and
right-censoring mechanisms.
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G-Computation Formula for Post-Intervention Distribution

• āK is a specific treatment regime of interest
• Consider an intervention that sets ĀK = āK in the NPSEM
• The post-intervention distribution is given by Robins’ G-computation

formula

Pa (̄l) =
K+1∏
k=0

Qa
Lk (̄lk),

where Qa
Lk (̄lk) = QLk

(
lk | l̄k−1, Āk−1 = āk−1

)
.
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Statistical Target Parameter

• Let La =
(
L0, La1, . . . ,Y a = LaK+1

)
denote the random variable with

probability distribution Pa

• Our statistical target parameter is the mean of Y a : Ψ(P) = EPaY a,
where Ψ :M→ IR.

• depends on P only through Q = Q(P).
• Equivalently denoted by the mapping Ψ : Q = {Q(P) : P ∈M} → IR

so that ψ0 = Ψ(Q0).
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Alternative target parameters

• Treatment-specific mean EPd Y d defined by the G-computation formula for a
dynamic treatment d

• Dose-Response
• Projection of a true dose-response curve (EPaY a : a ∈ A) onto a

working model {a→ mβ(a) : β}.
• Projection of the true dose-response curve (EPd Y d : d ∈ D), D a

collection of dynamic treatment rules, onto a working model
{d → mβ(d) : β}.

• Summary measures of conditional dose-response curves
(EPd (Y d |V ) : d ∈ D), conditioning on baseline covariates of interest

• Related classes of target parameters defined by history adjusted marginal
structural working models for history adjusted conditional treatment-specific
means

• Effects of stochastic interventions, intention to treat interventions, etc.
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A Sequential Regression G-Computation Formula

• By the iterative conditional expectation rule (tower rule), we have

EPaY a = E . . .E
[
E (Y a | L̄aK )|LaK−1 . . . | L0

]
.

• Conditional expectation given L̄a
K is equivalent to conditioning on

L̄K , ĀK−1 = āK−1.
• This yields the sequential regression G-computation formula

• Compute Q̄a
Y = EQa

Y
Y ≡ E

(
Y | L̄K , ĀK = āK

)
• Given Q̄a

Y , next compute Q̄a
LK = EQa

LK

(
Q̄a
Y | L̄K−1, ĀK−1 = āK−1

)
• Iterate over all time points

• given Q̄a
Lk+1 , compute Q̄a

Lk = EQa
Lk+1

(
Q̄a

Lk+1 | L̄k−1, Āk−1 = āk−1
)

• Until final step, Q̄a
L0 = EQL0

Q̄a
L1 .
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TMLE for an Intervention-Specific Mean

• Iterated conditional expectations approach (Bang and Robins, 2005)

E (Yā) = E
(
E
{
. . .E [E{Yā | L̄K , ĀK = āK}︸ ︷︷ ︸

Q̄a
L(K+1)

| L̄K−1, ĀK−1 = āK−1]

︸ ︷︷ ︸
Q̄a

L(K)︸ ︷︷ ︸
...

. . . | L0
}

︸ ︷︷ ︸
Q̄a

L(1)

)

︸ ︷︷ ︸
Q̄a

L(0)=Ψ(Q)

• TMLE target parameter mapping: target parameter is function of
iteratively defined sequence of conditional means, Ψ(Q̄a)

Q̄a =
(

Q̄a
Y , Q̄a

L(K), . . . , Q̄a
L(0)

)
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Efficient Influence Curve of Target Parameter

• Efficient influence curve representation as sum of iteratively defined scores of
iteratively defined conditional means

D∗ =
K+1∑
k=0

D∗k

where
D∗K+1 = I(ĀK = āK )

g0:K

(
Y − Q̄a

K+1
)
,

and

D∗k = I(Āk−1 = āk−1)
g0:k−1

(
Q̄a

Lk+1 − EQa
Lk

Q̄a
Lk+1

)
,

= I(Āk−1 = āk−1)
g0:k−1

(
Q̄a

Lk+1 − Q̄a
Lk

)
, k = K , . . . , 1,

and
D∗0 = Q̄a

L1 − EL0 Q̄a
L1 = Q̄a

L1 −Ψ(Q̄a).

g0:K =
∏K

k=1 gk
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L-TMLE Definition

• Initial estimate of Q̄a
Lk (Assume Y ∈ [0, 1])

super learning, parametric regression, etc.
• Submodel and Loss Function (e.g., negative log likelihood)

logitQ̄a,∗
Lk (εk , g) = logitQ̄a

Lk + εk
1

g0:k−1
, k = K + 1, . . . , 0

Lk,Q̄a
Lk+1

,g(Q̄a
Lk ) =

− I(Āk−1 = āk−1)
g0:k−1

{
Q̄a

Lk+1 log Q̄a
Lk + (1− Q̄a

Lk+1 ) log{1− Q̄a
Lk }
}

• Mapping

Ψ(Q̄a,∗
n ) = Q̄a,∗

L0,n = 1
n
∑n

i=1 Q̄a,∗
1,n(L0i )
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L-TMLE

• Known bounds (e.g. rare outcome) on conditional means can be
respected using logistic link.

• TMLE is double robust and asymptotically efficient if both g0 and the
conditional means Q̄a

Lk are consistently estimated.
• Statistical inference can be based on efficient influence curve:

conservative as long as g0 is estimated well.
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Example: PROBIT Study Re-Analysis

Investigate the impact of increasing duration of breastfeeding on number of GI
tract infections in 1st year of life∗

• Breastfeeding at time t impacts infection at time t + 1, which impacts decision to
continue breastfeeding at t + 2

• TMLE + SL estimates largest effect, with variance close to that of efficient
parametric G-computation estimator

-0.10 -0.08 -0.06 -0.04 -0.02 0.00

Impact of Breastfeeding for 9+ months vs. 1-2 months
 on number of GI Tract Infections

Reduction in Number of Infections

G-comp (likelihood)

G-comp (sequential)

IPTW

TMLE

TMLE+SL

∗ Schnitzer, et al, 2014
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Extension to Marginal Structural Models (simplified)

• Impose a MSM to smooth over areas where there is little support in
the data

• Consider a working logistic MSM,
logitmβ(d , t) = β1 + β2t + β3f (d , t)

• Define target parameter as

ψ0 = argmin
β

− E0
∑
t∈τ

∑
d∈D

{Yd(t)log mβ(d , t) + (1− Yd(t))log(1−mβ(d , t))}.

• See Petersen, et al (2013), ltmle package on CRAN
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Stratified TMLE for Longitudinal MSM Parameter

• Estimand ψ0 = β solves the equation

0 = E0
∑
t∈τ

∑
d∈D

d
dβmβ(d , t)

mβ(1−mβ)
(
E0(Y d(t) | L0)−mβ(d , t)

)
.

• Estimate Q̄d,t∗
L0

, for each time point, t, and rule d ∈ D using targeted
iterated conditional expectations approach

• Finally, stack Q̄d,t∗
L0

, and regress onto appropriate covariates in the model
(1, t, f (d , t))
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Notes on Targeting

• Multi-dimensional target parameter requires multi-dimensional
fluctuation at each step, εk = (ε1k , ε2k , ε3k )

Q̄d∗
Lk = Q̄d

Lk + εk
h1(d , t)
g0:k−1

,

with h1(d , t) =
d
dβ mβ(d,t)
mβ(1−mβ)

• Fit ε using observations where Āk−1 = āk−1
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Pooled TMLE for Longitudinal MSM Parameter

• Pooling across rules refers to using stacking the datasets for all rules
to estimate a single (multi-dimensional) εk common across all rules.

• The resulting dataset has n × |D| rows
• Pooling helps if there is sufficient support for some rules but not

others
• This simultaneous targeting across all rules still solves the efficient

influence curve equation PnD∗ = 0.
• An alternative pooled TMLE pools also over the time points t at final outcome

Y (t) at the targeting step. Initial estimates of Q̄t,d
Lk are obtained for all k from 0

to t, across d and t, and then targeted simultaneously with a common ε. Updates
are iterated until convergence. The dataset has n × |D| × K + 1 observations.
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Example: Progression of Albuminuria in Type-2 Diabetics

• Lowering glucose levels known to prevent
or slow development of Albuminuria

• Best glucose-lowering strategy is not
known

• Four candidate strategies, dθ,
intensify treatment when patient’s A1c level
reaches θ = 7%, 7.5%, 8%, or 8.5%

• HMO Research Network EHR data
7 sites, n = 51, 179

• Longitudinal TMLE was used to evaluate
a set of increasingly agressive dynamic
strategies for lowering glucose levels

Neugebauer, Schmittdiel, van der Laan, 2014

Counterfactual Survival Curves
(L-TMLE + SL)

Statistics
in Medicine R. Neugebauer et al.

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

d7
d7.5
d8
d8.5

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

5 10 15

0.
75

0.
80

0.
85

0.
90

0.
95

1.
00

Quarter since study entry

Su
rv

iv
al

 −
 P

(T
d>

t) 
(T

M
LE

)

Figure 1. Each plot represents TMLE estimates over 16 quarters of the four counterfactual survival curves corresponding with the four TI initiation strategies dθ with
θ = 7, 7.5, 8, 8.5. The plots located at the top left, top right, bottom left, and bottom right are obtained based on the estimates gθ

n , g
θ
n,t, g

θ
n,t,× , and gθ

n,t,SL of the nuisance
parameter gθ , respectively.

16 www.sim.org Copyright c⃝ 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 00 1–25
Prepared using simauth.cls
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Concluding Remarks

• TMLE provides a template for construction of efficient substitution
estimators

• Three basic requirements
• Loss function
• Submodel for fluctuation so that its loss-based score spans the efficient

influence curve
• Procedure for iteratively minimizing the empirical risk along the

fluctuation model through a current estimator
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Concluding Remarks

• All TMLEs are double robust and efficient, but may have different
finite sample performance

• Sequential regression
• particularly effective representation of post-intervention distribution,

and thereby causal effects
• Estimate only smallest portion of Q needed for evaluating the

parameter
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Core Concepts in Targeted Learning

• Translate a scientific question and background knowledge into a
formal causal model, target causal quantity, statistical model and
statistical target parameter

• Target statistical parameter has a causal interpretation when
assumptions are met, variable importance otherwise

• SL + TMLE for estimation
• Optimal bias/variance trade-off for target parameter
• Loss-based estimation using cross-validation
• Flexible fitting of relevant components of the likelihood
• Double robust to mitigate misspecification bias
• Substitution estimator that respects domain knowledge
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Selected Resources

• http://www.targetedlearningbook.com

• M.J. van der Laan and S. Rose. Targeted Learning: Prediction and Causal Inference for
Observational and Experimental Data. Springer, New York, 2011.

• M.J. van der Laan and R. Starmans. Entering the era of data science: Targeted learning
and the integration of statistics and computational data analysis. Adv Stat.
2014;2014:1Ð19.

• S. Gruber and MJ van der Laan. tmle: An R Package for Targeted Maximum Likelihood
Estimation. Journal of Statistical Software 2012; 51(13).

• M.J. van der Laan, E. Polley, and A. Hubbard. Super learner. Statistical Applications in
Genetics and Molecular Biology, 6(25), 2007. ISSN 1.

• E.C. Polley and M.J. van der Laan. Super Learner in Prediction. U.C. Berkeley Division of
Biostatistics Working Paper Series. Working Paper 266 (2010).

Software
• E.C. Polley, SuperLearner: Super Learner in Prediction, v2.0-19,

http://cran.r-project.org/web/packages/SuperLearner, 2016.

• S. Gruber. tmle. R package version 1.2.0-4,
http://CRAN.R-project.org/package=tmle, 2014.
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