Some Data Analytics for Developing Just-in-Time Adaptive Interventions in Mobile Health

Susan Murphy 10.24.16

The Methodology Center

The Dream!

- "Continually Learning Mobile Health Intervention"
- Help you achieve, and maintain, your desired long term healthy behaviors
 - Provide sufficient short term reinforcement to enhance your ability to achieve your long term goal
- The ideal mobile health intervention
 - will engage you when you need it and will not intrude when you don't need it.
 - will adjust to unanticipated life events

Heart Steps

Context provided via data from: Wearable band \rightarrow activity and sleep quality;

<u>Smartphone sensors</u> \rightarrow busyness of calendar, location, weather;

<u>Self-report</u> \rightarrow stress, user burden

In which contexts should the smartphone provide the user with an activity suggestion?

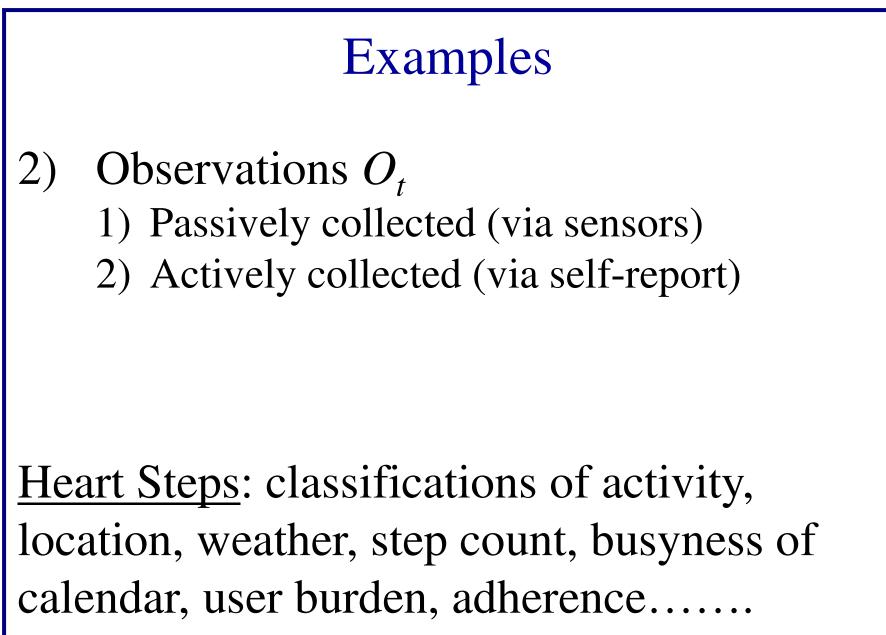
Data from wearable devices that sense and provide treatments

- On each individual: $O_1, A_1, Y_2, \dots, O_t, A_t, Y_{t+1}, \dots$
- *t*: Decision point
- O_t: Observations at tth decision point (high dimensional)
- A_t : Action at t^{th} decision point (treatment)
- Y_{t+1} : Proximal outcome (e.g., reward, utility, cost)

Examples

- 1) Decision Points (Times, *t*, at which a treatment can be provided.)
 - 1) Regular intervals in time (e.g. every 10 minutes)
 - 2) At user demand

<u>Heart Steps</u>: approximately every 2-2.5 hours (activity suggestions)

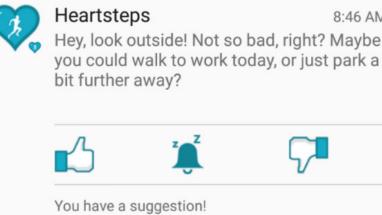


Examples

Actions A_t 3)

- 1) Types of treatments that can be provided at a decision point, t
- 2) Whether to provide a treatment

HeartSteps: tailored activity suggestion (yes/no)



8:46 AM

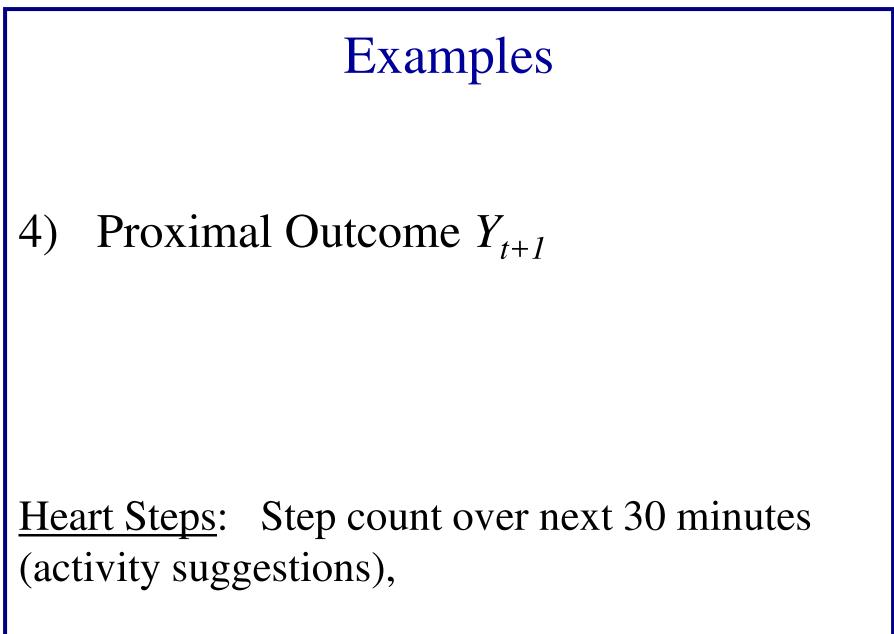
You have a suggestion!

Availability

• Treatments can only be delivered at a decision point if an individual is *available*.

 $-O_t$ includes $I_t=1$ if available, $I_t=0$ if not

- Treatment effects at a decision point are conditional on availability.
- Availability is not the same as adherence!



Continually Learning Mobile Health Intervention

1) Trial Designs: Are there effects of the actions on the proximal response? *experimental design*

2) Data Analytics for use with trial data: Do effects vary by the user's internal/external context,? Are there delayed effects of the actions? *causal inference*

3) Learning Algorithms for use with trial data: Construct a "warm-start" treatment policy. *batch Reinforcement Learning*

4) Online Algorithms that personalize and continually update the mHealth Intervention. *online Reinforcement Learning*

10

Heart Steps Micro-Randomized Trial

On each of *n* participants and at each of *T* decision points, treatment is repeatedly randomized:

Activity suggestion (T=210 randomizations)

• Provide a suggestion with probability .6; do nothing with probability .4

Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

$$Y_{t+1}$$
 "~" $\alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$

and then next,

$$Y_{t+1} \quad \tilde{} \sim \tilde{} \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

and so on...

- Y_{t+1} is subsequent activity over next 30 min.
- $A_t = 1$ if activity suggestion and 0 otherwise
- Z_t summaries formed from t and past/present observations
- S_t potential moderator (e.g., current weather is good or not)

Conceptual Models

Generally data analysts fit a series of increasingly more complex models:

$$Y_{t+1} \quad ``\sim `` \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$$

and then next,

$$Y_{t+1} ~``~ \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

and so on...

 $\alpha_0 + \alpha_1^T Z_t$ is used to reduce the noise variance in Y_{t+1} (Z_t is sometimes called a vector of control variables)

Causal Effects

$$Y_{t+1} \quad ``\sim " \quad \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t$$

 β_0 is the effect, marginal over all observed and all unobserved variables, of the activity suggestion on subsequent activity.

$$Y_{t+1} \quad \tilde{} \sim \tilde{} \alpha_0 + \alpha_1^T Z_t + \beta_0 A_t + \beta_1 A_t S_t$$

 $\beta_0 + \beta_1$ is the effect when the weather is good ($S_t=1$), marginal over other observed and all unobserved variables, of the activity suggestion on subsequent activity. 14

Data Scientist's Goal

- Challenges:
 - Time-varying treatment $(A_t, t=1,...,T)$
 - "independent" variables: Z_t , S_t , I_t that may be affected by prior treatment
- Develop data analytic methods that are consistent with the scientific understanding of the meaning of the β regression coefficients
- Robustly facilitate noise reduction via use of controls, Z_t 15

For the Statistician!

Treatment Effect Model:

$$E[E[Y_{t+1}|A_t = 1, I_t = 1, H_t] - E[Y_{t+1}|A_t = 0, I_t = 1, H_t]| I_t = 1, S_t] = S_t^T \beta$$

 H_t is all participant data available up to and at time t

 S_t is a vector of data summaries and time, t, $(S_t \subseteq H_t)$

 I_t indicator of availability We aim to conduct inference about β ! "Centered and Weighted Least Squares Estimation"

- Simple method for complex data!
- Enables unbiased inference for a causal, marginal, treatment effect (the β 's)
- Inference for treatment effect is not biased by how we use the controls, Z_t , to reduce the noise variance in Y_{t+1}

Application of the "Centered and Weighted Least Squares Estimation" method in first analyses of HeartSteps Heart Steps Pilot Study

On each of n=37 participants:

a) Activity suggestion, A_t

- Provide a suggestion with probability .6
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - a tailored walking activity suggestion (probability=.3)
- **Do nothing (probability=.4)**
- 5 times per day * 42 days= 210 decision points

Conceptual Models

 $Y_{t+1} \quad \text{``~} \quad \alpha_0 + \alpha_1 Z_t + \beta_0 A_t$ $Y_{t+1} \quad \text{``~} \quad \alpha_0 + \alpha_1 Z_t + \beta_0 A_t + \beta_1 A_t d_t$

- *t*=1,...*T*=210
- $Y_{t+1} = \text{log-transformed step count in the 30 minutes after}$ the *t*th decision point,
- $A_t = 1$ if an activity suggestion is delivered at the t^{th} decision point; $A_t = 0$, otherwise,
- $Z_t = \text{log-transformed step count in the 30 minutes$ *prior*to the*t*th decision point,
- d_t =days in study; takes values in (0,1,...,41)

Pilot Study Analysis

 Y_{t+1} "~" $\alpha_0 + \alpha_1 Z_t + \beta_0 A_t$, and

$$Y_{t+1} \quad ``\sim " \quad \alpha_0 + \alpha_1 Z_t + \beta_0 A_t + \beta_1 A_t d_t$$

Causal Effect Term	Estimate	95% CI	p-value
$\beta_0 A_t$ (effect of an activity suggestion)	$\hat{\beta}_0 = .13$	(-0.01, 0.27)	.06
$\beta_0 A_t + \beta_1 A_t d_t$	$\hat{\beta}_0 = .51$	(.20, .81)	<.01
(time trend in effect of an activity suggestion)	$\hat{\beta}_1 =02$	(03,01)	<.01
			21

Heart Steps Pilot Study

On each of n=37 participants:

- a) Activity suggestion
 - Provide a suggestion with probability .6
 - a tailored walking activity suggestion (probability=.3)
 - a tailored sedentary-reducing activity suggestion (probability=.3)
 - **Do nothing (probability=.4)**
- 5 times per day * 42 days= 210 decision points

Pilot Study Analysis

$$Y_{t+1} ``~" \alpha_0 + \alpha_1 Z_t + \beta_0 A_{1t} + \beta_1 A_{2t}$$

- $A_{1t} = 1$ if walking activity suggestion is delivered at the t^{th} decision point; $A_{1t} = 0$, otherwise,
- $A_{2t} = 1$ if sedentary-reducing activity suggestion is delivered at the *t*th decision point; $A_{2t} = 0$, otherwise,

Causal Effect	Estimate	95% CI	p-value
$\beta_0 A_{1t} + \beta_1 A_{2t}$	$\hat{\beta}_0 = .21$ $\hat{\beta}_1 > 0$	(.04, .39) ns	.02 ns

Initial Conclusions

- The data indicates that there is a causal effect of the activity suggestion on step count in the succeeding 30 minutes.
 - This effect is primarily due to the walking activity suggestions.
 - This effect deteriorates with time
 - The walking activity suggestion initially increases step count over succeeding 30 minutes by ≈ 271 steps but by day 20 this increase is only ≈ 65 steps.

Discussion

Problematic Analyses

- GLM & GEE analyses
- Random effects models & analyses
- Machine Learning Generalizations:
 - Partially linear, single index models & analysis
 - Varying coefficient models & analysis

--These analyses do not take advantage of the microrandomization. Can accidentally eliminate the advantages of randomization for estimating causal effects-- 25

Discussion

- Randomization enhances:
 - Causal inference based on minimal structural assumptions
- Challenge:
 - How to include random effects which reflect scientific understanding ("person-specific" effects) yet not destroy causal inference?

It takes a Team!

