DATA-ADAPTIVE VARIABLE SELECTION FOR CAUSAL INFERENCE

Susan M Shortreed

Group Health Research Institute
Department of Biostatistics, University of Washington

shortreed.s@ghc.org

joint work with Ashkan Ertefale
Department of Biostatistics and Computational Biology
University of Rochester

Oct 25, 2016

Outline

Propensit scores

Variable selection: Prediction

variable selectior Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

- Causal inference in observational settings
 - Estimating unbiased treatment effects
- Goals of variable selection
 - Prediction versus causal inference
- Outcome-adaptive lasso
 - Simulation results
 - Opioid use and depressive symptoms
- Discussion

Causal inference in observational setting

Propensity scores

Variable selection: Prediction

Variable selectior Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussion

Goal: Unbiased treatment effect estimation from observational data

- Subject of several methodological advancements
- Propensity scores methods commonly implemented
 - Especially helpful when many confounders
- Several different propensity score approaches
 - Stratification
 - Matching
 - Adjustment in outcome model
 - Inverse probability weighting

Propensity scores as balancing scores

Propensity scores

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

- Propensity score methods for causal inference in observational settings rely on the propensity score as a balancing score
- A balancing score is a summary measure of covariates
- At each level of balancing score, exposed and unexposed individuals can be compared directly
 - Rosenbaum, Rubin. The central role of the propensity score in observational studies for causal effects.
 Biometrika. 1983;70(1):41-55.

Propensity score & causal inference

Propensity scores

Variable selection Prediction

Variable selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussion

 Propensity score: probability of exposure given covariates (assume binary exposure)

$$P(A = 1 | X_1, X_2, ..., X_{d_0})$$

- Some assumptions required for propensity score to be a balancing score
 - No unmeasured confounders
 - Positivity
 - Stable unit value assumption
 - Consistency

Propensity score variable selection, key assumptions

Propensity scores

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussion

No unmeasured confounding

- A $\perp Y_A \mid X_1, ..., X_{d_0}$
- All confounders of treatment effect measured and included in propensity score
- 2 Positivity

$$ightharpoonup 0 < p(A = 1 | X_1, ..., X_{d_0}) < 1$$

Near-positivity violations: when propensity score very close to 0 or 1

Can result in really big weights

Outcomeadaptive lasso

Propensity score variable selection

Propensity scores

Variable selection Prediction

variable selection Causal inference

Outcomeadaptive
lasso
Simulation results
Opioids and
depressive
symptoms

Discussio

- Previously, 'throw-in-the-kitchen-sink' mentality
 - Concern excluding confounders leading to bias
- Literature shows statistical efficiency can be affected
 - Including variables related to exposure but not to the outcome can decrease precision
 - Both bias and precision important
- Ideal estimator is unbiased, while maintaining statistical efficiency

Schisterman, Cole, Platt (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20(4):488-95.

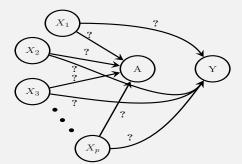
Rotnitzky, Li, and Li (2010). A note on overadjustment in inverse probability weighted estimation. Biometrika 97(4):997-1001.

Patrick, Schneeweiss, Brookhart, Glynn, Rothman, Avorn, Stürmer (2011). The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration. Pharmacoepi and Drug Safety 20(6):551-9.

Outcomeadaptive

Estimating propensity score

- Which covariates needed to account for confounding?
 - Often do not know all confounders
 - Use scientific knowledge
 - Limited to covariates available
 - Electronic health records contain vast amounts of data



Goal Use data to select variables to include in propensity score

Propensity scores

selection: Prediction

selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Variable selection for prediction

Propensit scores

Variable selection: Prediction

Variable selectior Causal inference

Outcomeadaptive
lasso
Simulation results
Opioids and
depressive
symptoms

Discussion

Some notation

- Continuous-valued outcome: Y
- Covariates: X_j, j = 1 : d
- $E[Y|x] = \beta_1^* x_1^* + ... + \beta_d^* x_d$
 - Where $d_0 < d$ of $\beta_j^* \neq 0$
- Prediction variable selection goal:
 - Estimate a parsimonious model to predict Y
 - Find and estimate $\beta_i^* \neq 0$

Outcomeadaptive lasso

Propensity

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussio

Adaptive lasso (for prediction)

Goal: Find and estimate $\beta_j^* \neq 0$ Optimize a weighted lasso equation:

$$\hat{\beta}(AL) = \underset{\beta}{\operatorname{argmin}} \quad \left(\left\| \sum_{i=1}^{n} (y_i - \sum_{j=1}^{d} x_{i,j} \beta_j) \right\|^2 + \lambda_n \sum_{j=1}^{d} \hat{\omega}_j |\beta_j| \right)$$

$$\hat{\omega}_j = \frac{1}{|\hat{\beta}_i(ols)|^{\gamma}} \text{ such that } \gamma > 0$$

- Where $\hat{\beta}_{j}(ols)$ is unpenalized least squares estimates
- Smaller $\hat{\beta}_j(ols)$ means $\hat{\beta}_j(AL)$ penalized more
 - ▶ i.e. shrunk to 0
- Sparcity and consistency guarantees
 - Select λ_n appropriately as a function of n

Zou (2006) The adaptive lasso and its oracle properties.

J. Am Stat Assoc, 101(476):1418-29

Adaptive penalized likelihood - logistic

Goal: Estimate parsimonious relationship for A given X

- A binary exposure
- X_i vector of d covariates for individual i

$$\hat{\eta}(AL) = \underset{\eta}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \left(-a_i(\mathbf{x_i}^T \eta) + \log(1 + \exp^{\mathbf{x}_i^T \eta}) \right) + \lambda_n \sum_{j=1}^{p} \hat{\omega}_j |\eta_j| \right)$$

$$\hat{\omega}_{j}=rac{1}{|\hat{\eta}_{i}(\textit{mle})|^{\gamma}}$$
 such that $\gamma>0$

- Where $\hat{\eta}_i(mle)$ is unpenalized MLE
- Same properties as linear adaptive lasso
 - ▶ Smaller $\hat{\eta}_i(mle)$ means $\hat{\eta}_i(AL)$ shrunk closer to 0
- Use to select variables for propensity score?

inference Outcome-

Variable

selection: Prediction

adaptive lasso Simulation results Opioids and depressive symptoms

Outcomeadaptive lasso

Variable selection for causal inference, some notation

Propensit

Variable selection: Prediction

Variable selection: Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussion

Continuous-valued outcome: Y

- Binary exposure: A
- Covariates: X_j, j = 1:d
 - ightharpoonup Select $d_0 < d$ covariates to include in propensity score
 - Estimate propensity score using reduced model
- Estimate average treatment effect
 - Inverse probability weighted estimator

$$\hat{\theta} = \frac{\sum_{i=1}^{n} \hat{w}_{i} Y_{i} A_{i}}{\sum_{i=1}^{n} \hat{w}_{i}} - \frac{\sum_{i=1}^{n} \hat{w}_{i} Y_{i} (1 - A_{i})}{\sum_{i=1}^{n} \hat{w}_{i} (1 - A_{i})}$$

Variable selection for propensity score

Propensit scores

Variable selection: Prediction

Variable selection: Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussior

For unbiased treatment effect estimation

Goal: Parsimonious prediction model for exposure

Goal: Parsimonious balancing score to account for bias, while maintaining statistical efficiency

- Estimate propensity score to get a balancing score
 - Propensity score not simply predict exposure
- Which covariates include in propensity score model?
 - Need valid assumptions for causal inference
 - No unmeasured confounding and positivity

Outcomeadaptive lasso

Propensity scores

Variable selection: Prediction

Variable selection: Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussio

Variable selection for causal inference

Goal Select variables to include in propensity score

- Include all confounders
 - Ensure validity of no umeasured confounders
- Include predictors of outcome
 - Even if not related to exposure
 - Can improve precision
- Exclude variables that predict exposure, but not outcome
 - Can result in unnecessary near-violations to positivity assumption
 - Results in large weights and decreased precision
- Exclude spurious variables

Schisterman, Cole, Platt (2009). Overadjustment bias and unnecessary adjustment in epidemiologic studies. Epidemiology 20(4):488-95.

Rotnitzky, Li, and Li (2010). A note on overadjustment in inverse probability weighted estimation. Biometrika 97(4):997-1001.

Patrick, Schneeweiss, Brookhart, Glynn, Rothman, Avorn, Stürmer (2011). The implications of propensity score variable selection strategies in pharmacoepidemiology: An empirical illustration. Pharmacoepi and Drug Safety 20(6):551-9.

Outcome-adaptive lasso for causal inference

- Estimate propensity score for binary exposure, A
 - Include confounders and predictors of the outcome
 - Exclude predictors of exposure and spurious variables

$$\hat{\alpha}(OAL) = \underset{\alpha}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \left(-a_i(\mathbf{x_i}^T \alpha) + \log(1 + e^{\mathbf{x}_i^T \alpha}) \right) + \lambda_n \sum_{j=1}^{d} \hat{\omega}_j |\alpha_j| \right)$$

Define $\hat{\omega}_j = \frac{1}{|\hat{\beta}_i(ols)|^{\gamma}}$, where $\hat{\beta}_j(ols)$ is the estimate from:

$$\hat{\beta}(ols) = \underset{\beta}{\operatorname{argmin}} \left\| (\mathbf{y} - \beta_A \mathbf{a} - \sum_{j=1}^p \mathbf{x}_j \beta_j) \right\|^2$$

Propensity

Variable selection: Prediction

Variable selection: Causal inference

Outcomeadaptive lasso

Opioids and depressive symptoms

Outcome-adaptive lasso for causal inference

- Estimate propensity score for binary exposure, A
 - Include confounders and predictors of the outcome
 - Exclude predictors of exposure and spurious variables

$$\hat{\alpha}(OAL) = \underset{\alpha}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \left(-a_{i}(\mathbf{x_{i}}^{T}\alpha) + \log(1 + e^{\mathbf{x}_{i}^{T}\alpha}) \right) + \lambda_{n} \sum_{j=1}^{d} \hat{\omega}_{j} |\alpha_{j}| \right)$$

Define $\hat{\omega}_j = \frac{1}{|\hat{\beta}_i(ols)|^{\gamma}}$, where $\hat{\beta}_j(ols)$ is the estimate from:

$$\hat{\beta}(ols) = \underset{\beta}{\operatorname{argmin}} \left\| (\mathbf{y} - \beta_A \mathbf{a} - \sum_{i=1}^{p} \mathbf{x}_i \beta_i) \right\|^2$$

Propensity scores

Variable selection: Prediction

Variable selection: Causal inference

Outcomeadaptive lasso

Opioids and depressive symptoms

Outcome-adaptive lasso for causal inference

Propensity

Variable selection:

Variable selection Causal inference

Outcomeadaptive lasso

Opioids and depressive symptoms

Discussion

- Smaller $\hat{\beta}(ols)$ means $\hat{\alpha}(OAL)$ shrunk closer to 0
 - Spurious variables and variables that predict exposure, but not the outcome have small $\hat{\beta}(ols)$

$$\hat{\alpha}(OAL) = \underset{\alpha}{\operatorname{argmin}} \left(\sum_{i=1}^{n} \left(-a_{i}(\mathbf{x_{i}}^{T}\alpha) + \log(1 + e^{\mathbf{x}_{i}^{T}\alpha}) \right) + \lambda_{n} \sum_{j=1}^{d} \hat{\omega}_{j} |\alpha_{j}| \right)$$

Define $\hat{\omega}_j = \frac{1}{|\hat{\beta}_i(ols)|^{\gamma}}$, where $\hat{\beta}_j(ols)$ is the estimate from:

$$\hat{\beta}(ols) = \underset{\beta}{\operatorname{argmin}} \left\| (\mathbf{y} - \beta_A \mathbf{a} - \sum_{j=1}^{p} \mathbf{x}_j \beta_j) \right\|^2$$

Properties of outcome-adaptive lasso

Propensit scores

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso

Opioids and depressive symptoms

- If certain criteria regarding mild regularity conditions,
 λ_n, and γ are met, outcome-adaptive lasso approach:
 - Includes confounders
 - Includes predictors of the outcome in finite samples
 - Excludes variables that predict exposure, but not outcome
 - Excludes spurious variables

Selecting λ_n

Propensity scores

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso

Simulation result Opioids and depressive symptoms

Discussior

- Minimize weighted absolute mean distance
 - $\hat{w}_{i}^{\lambda_{n}}$ are weights estimated using λ_{n}
 - $\hat{eta_j}(ols)$ are OLS estimates from outcome model

$$\mathsf{wAMD}(\lambda_n) = \sum_{j=1}^d \left| \hat{\beta}_j(ols) \right| \left| \frac{\sum_{i=1}^n \hat{w}_i^{\lambda_n} X_{ij} A_i}{\sum_{i=1}^n \hat{w}_i^{\lambda_n} A_i} - \frac{\sum_{i=1}^n \hat{w}_i^{\lambda_n} X_{ij} (1 - A_i)}{\sum_{i=1}^n \hat{w}_i^{\lambda_n} (1 - A_i)} \right|,$$

- Large λ_n forces all propensity score coefficients to zero
- Small coefficients in propensity score may cause differences in covariate means b/w treatment groups
 - If X_j impacts outcome, increase values of wAMD
 - If X_i does not impact outcome, will not impact wAMD

Simulation set-up

Propensity

Variable selection: Prediction

Variable selectior Causal inference

adaptive
lasso
Simulation results
Opioids and
depressive
symptoms

- Continuous-valued outcome, Y, generated from $Y_i = \beta_a A + \sum_{j=1}^d \beta_j X_j + \varepsilon_i$, where $\varepsilon_i \sim N(0,1)$ and $\beta_a = 0$
- $X_i = (X_{i1}, X_{i2}, ..., X_{id})$ generated from multivariate standard normal
- Binary exposure, A, generated from Bernouli with $logit[P(A=1)] = \left[\sum_{j=1}^{d} v_j X_j\right]$
- Investigated several scenarios varying magnitude of β_j and v_j , sample size, n, and number of covariates, d.
 - Modeled simulations after those performed in Zigler, Dominici (2014). Uncertainty in propensity score estimation: Bayesian methods for variable selection and model averaged causal effects. J Am Stat Assoc, 109:95-107.

Simulation set-up

Propensit scores

Variable selection: Prediction

Variable selection Causal inference

adaptive lasso Simulation results Opioids and depressive symptoms

- $\lambda_n \in \{n^{-5}, n^{-1}, n^{-0.75}, n^{-0.5}, n^{-0.25}, n^{0.25}, n^{0.49}\}$
 - Select λ_n^{opt} using wAMD
- Select γ s.t. properties of outcome-adaptive lasso hold
- Perform 1,000 simulations and calculate

$$\hat{\theta} = \frac{\sum_{i=1}^{n} \hat{w}_{i}^{\lambda_{n}^{\mathsf{opt}}} Y_{i} A_{i}}{\sum_{i=1}^{n} \hat{w}_{i}^{\lambda_{n}^{\mathsf{opt}}} A_{i}} - \frac{\sum_{i=1}^{n} \hat{w}_{i}^{\lambda_{n}^{\mathsf{opt}}} Y_{i} (1 - A_{i})}{\sum_{i=1}^{n} \hat{w}_{i}^{\lambda_{n}^{\mathsf{opt}}} (1 - A_{i})}.$$

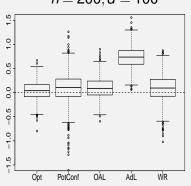
Simulation results

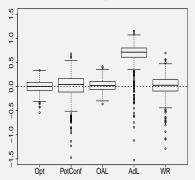
Simulations: large d, modest n

- outcome model: $\beta = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, \dots, 0)$
- exposure model: $v = (1, 1, 0, 0, 1, 1, 0, \dots, 0)$

$$n = 200, d = 100$$

$$n = 500, d = 200$$





Simulations: modest *d*, vary *n*

• outcome model: $\beta = (0.6, 0.6, 0.6, 0.6, 0, 0, 0, \dots, 0)$

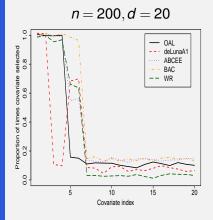
• exposure model: $v = (1, 1, 0, 0, 1, 1, 0, \dots, 0)$

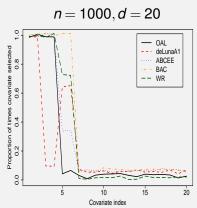
Variable

Variable selection: Prediction

Variable selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms





MASCOT study

Propensity

Variable selection:

Variable selectior Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

- Some chronic pain patients take opioids long-term
- Some evidence opioids increase depressive symptoms
- MASCOT study of long-term opioid therapy patients
 - Middle-Aged/Seniors Chronic Opioid Therapy
 - Collected information from survey (self-report) and electronic medical records
- Depression symptoms measured by PHQ-8
 - Measured at baseline and 4 months
- Compare 4 month depressive symptoms in two exposure groups based on opioid use between baseline and 4 month follow-up
 - Lower dose and higher dose
- 37 covariates considered for propensity score

Opioids and depressive symptoms

Baseline covariates	Lower dose	Higher dose	% Selected
PHQ-8	7.1 (5.7)	8.2 (5.9)	100.0
Anxiety symptoms	1.6 (1.8)	1.7 (1.8)	84.3
# pain days (6 mo)	144.5 (53.7)	143.4 (53.2)	34.0
Pain scale	6.0 (2.3)	6.4 (2.0)	34.0

- 10,000 bootstrap replicates to calculate standard error and selection percentage
- PHQ-8 4 month scores in lower dose group 5.93 (sd=5.10); higher dose 6.79 (sd=5.79)
- IPTW estimate comparing lower and higher does group 0.13 (0.10,0.17)

Efron. (2014). Estimation and accuracy after model selection. J Am Stat Assoc 109:991-1007.

Propensity scores

selection Predictio Variable

selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

Discussion

Propensit scores

Variable selection: Prediction

selection Causal inference

Outcomeadaptive lasso Simulation results Opioids and depressive symptoms

- Variable selection for prediction and causal inference have different goals
 - Approaches from one setting may not directly apply to the other
- Outcome-adaptive lasso for causal inference
 - Good theoretical and empirical properties
 - Current approach designed for d < n
 - Future work to expand to settings with d > n and with rare binary outcome
 - Efficient approaches for calculating accurate standard errors after model selection