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Wearables

“How would you be interested in wearing/using a device, ing I was from
a brand you trust, offering a service that intorests you?"
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Base: 4556 US Online Adurts (184)
(porcentages may not total 100 because of rounding)

source: North Amencan Consumer Technographics Consumer Technoloqy Survey, 2014



Wearables

Research Consumer




What do wearables offer?

Physical Activity, Sleep, Circadian Rhythmicity
Electronic Diary (EMA):

— Mood, energy, routines

Heart Rate (ECG, bpm)
Blood Glucose
Ambient light, temperature (circardian markers)

Voice



Scientific questions
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Accelerometers

* Detects acceleration in three orthogonal planes

* https://www.youtube.com/watch?v=iriGOY4ANGnE



https://www.youtube.com/watch?v=irjG9Y4NGnE

Macro- and Micro-scale

* Macro-scale — summarized data (1 minute intervals)

Macro-scale Features
- T

CPM

s}
ol
oos |

¢

* Micro-scale — raw accelerometry data collected (10Hz+)
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Stage 1: Episode Detection

Non-wear time
Posture: sitting, lying, standing, driving, stairs

climbing, ...
Activity: walking, running, driving, ...

Sleep: rest/wake, in/out of bed, ...

Walking vs. time-of-day




Stage 2: Feature extraction

* Walking: cadence, stride-variability, asymmetry, ...

* Sleeping: time in bed, fragmentation, variability, ...




Stage 3: Feature Fusion

 Example: a subject with a CHF-related hospitalization
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Challenges

* Need new methods that can be applied to:
— thousands of subjects
— very large data sets (10 Tb+)

— free-living environment

— no visual labeling(camera or person);

— large between- and within- person variability



Sensor fusion

ENAR & JSM 2019:
Monitoring health behaviors with multi-sensor mobile technology
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Personal health data banks

* Personal small data (from wearables)
* Big data from health providers
* Link both in personal health account
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Two shapshots

* Motor Activity Research Consortium for
Health (MMARCH)

* Monitoring individuals with Congestive Heart
Failure



Motor Activity Research Consortium for Health
(mMMARCH)
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Biological processes associated with regulation of homeostatic
domains assessed by mobile tracking

Environment and
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MmMMARCH

* Leverage mobile technology via
— standardizing data collection protocols across sites
— developing and applying novel analytical methods

* The range of scientific questions
— interrelationship of physical activity, sleep and mood
— interplay between sleep, stress, and alcohol use



Actigraphy and EMA
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Tracking Inter-relationships of Motor Activity, Sleep, Mood, and Energy via Mobile Technologies: Evidence for Cross-Domain
Dysregulation in Bipolar | Disorder; JAMA: Psychiatry (in press)

Merikangas, K., Swendsen, J., Hickie, I., Cui, L., Shou, H., Merikangas, A., Zhang, J., Lamers, F., Crainiceanu, C., Volkow, N., Zipunnikov, V.
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Actigraphy and EMA

Bidirectional Day Level Effects between Sleep

Measures and Stress Ratings
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CHF

Heart failure (HF) is a leading chronic disease in the elderly
Lifetime risk is 20% for those over age 40 in the US
HF burden exceeds $30 billion (> 50% on hospitalization costs)

|dentifying subjects with increased risk of hospitalization is
iImportant



CHF

Static risk models include demographics, comorbidities (AFib,
hypertension, diabetes mellitus), income, etc.

Dynamic risk models may be more accurate by including real-
time data from wearables

Cardiac Care Center of Columbia University Medical Center
59 individuals with congestive heart failure (CHF)
3-9 months of follow up




CHF

24 individuals had adverse clinical events
— 14 hospitalizations
— 10 emergency room visits

Goal: model within-subject pre/post event change in patients
status

Method: track multi-feature representation in three domains

— sleep
— physical activity
— diurnal/circadian patterns




No-event group subject

- 8 months of monitoring
- Low week-to-week variability
- Had no hospitalizations
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8 months of monitoring
High week-to-week variability
Had a hospitalization
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Multi-domain approach

* Track three domains g dadill
— sleep (11:30pm-07:00am) A
— physical activity (07:00am-11:30pm) e Sleep
— diurnal/circadian patterns (12:00am-12:00am)

Subject 3 seven day needle Subject 3 seven day Heatmap
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Multi-domain approach

* Physical Activity (PA)

— Intensity (SePA, LiPA, MVPA), duration (bouted,
fragmented), frequency (30-60 mins per day);

— Steps, Energy Expenditure, Heart Rate Reserve

e Sleep (SL)

— Stages (REM, NR1-3), transitions/duration, sleep
efficiency, fragmentation, sleep onset

e Circadian Rhythmicity (CR)

— parametric, non-parametric models, strength,
stability, variability
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Event group
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Conclusion

ACES may be useful for

— in pre-event dynamic assignment of risk
— post-event monitoring of patient status
— potentially for pre-event intervention

What is the meaning of pre-clinical (silent) events

Pre-clinical episodes: not all high-risks periods ends with an
event (in both groups)

Future

— External validation: on-going multi-site pilot
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