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Motivation

Diabetes

@ Current diabetes guidelines: tight control of glycosylated
hemoglobin (Alc) (< 7 %)

o Healthy patients.

o Based on trials of younger patients without severe diabetes
complications or other comorbidities.

o Relatively low risk of tight control; significant benefits in
reducing incidence of vascular events

e Tight control of BP (<130/80 mm Hg) and LDL cholesterol
(<100 mg/dl) for patients with diabetes
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Motivation

Diabetes

@ Inappropriate for complex diabetes patients, i.e., older patients
(age > 65 years) and/or those with comorbid conditions.

o Evidence for these guidelines was mainly obtained from the
results of randomized clinical trials (RCTs)

o Complex patients usually meet the exclusion criteria of clinical
trials

e Increased risk of drug-related morbidity, e.g., hypoglycemia,
hypotension
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Motivation

Diabetes

@ Guidelines recognize that less stringent treatment goals may
be appropriate for complex diabetes patients, and recommend
individualization in treatments based on clinical experiences.

@ How can we strengthen the current guidelines for complex
patients?

@ Opportunities: large electronic health records systems
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Motivation

Alc control observational study (Pl: Smith, Maureen)

@ Linked claims and EHR data for Medicare beneficiaries in the
University of Wisconsin Medical Foundation (UWMF) system.

e Met a validated algorithm for identifying patients with diabetes
via claims (each claim contains information associated with the
services or procedures performed, e.g., ICD-9-CM diagnosis
codes);

e Medically homed at the participating large, Midwestern,
multi-specialty provider group

o UWMF EHR systems: detailed clinical results including
laboratory values and vital signs

@ 8,304 diabetes patients active during 2003-2011, recorded
each 90-day quarter in which they were alive at the start of
the quarter
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Motivation

@ Alc values recorded in the EHR.

@ Outcome: adverse outcomes occurring during these quarters
(e.g., emergency department use or hospitalizations, death),
documented from claims information.

o Covariates: sociodemographics, and indicators for
comorbidities; time varying patient complexity: the presence
of chronic kidney disease (CKD) or congestive heart failure
(CHF)
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Figure 1: Risk of multiple events.
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Motivation

How to target tight Alc control for these patients?
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Figure 2: Alc level over time.
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Dynamic treatment regimes

Dynamic Treatment Regime

@ At any decision point
e Input: available historical information on the patient to that
point.
e Output: next treatment.

e Dynamic treatment regimes (DTRs) are sequential decision
rules for individual patients that can adapt over time to an
evolving illness.

e One decision rule for each time point.

e Each rule: recommends the treatment at that point as a
function of accrued historical information.

e An algorithm for treating any patient.

e Aim to optimize some cumulative clinical outcome.
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Dynamic treatment regimes

DTR Goals

Learn adaptive treatment strategies: tailor (sequences of)
treatments based on patient characteristics.

f . Degree of Tailoring N |
{ One Size Fits All Inherent Characteristics = VLt
Degree of Tailoring > Dy .
l Once and for All Time Varing Characteristics Dmc |

Maximize the benefit of dynamic treatment regimes:
@ Well chosen tailoring variables.

@ Well devised decision rules.
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Dynamic treatment regimes

Dynamic Treatment Regimes (DTRs)

Observe data on n individuals, T stages for each individual,
X1, A1, Ry, Xo, Aoy X7 Ay Ry X

@ Xi: Initial information.
@ X;: Intermediate information between stages t — 1 and t,t > 2.

@ A;: Observed treatment received at stage t, e.g., tight control Alc
or not, A; € {0,1}.

@ R;: Observed outcome following stage t, e.g., ED visits,
hospitalizations or deaths following stage t.

@ H,: History available at stage t,
He = {X1, A1, Ry, ..., Aee1, Ree1, Xe )

A DTR is a sequence of decision rules:

d= (dl(Hl), 300 dT(HT))a dt(Ht) & {0, 1}
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Multi-stage Data
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Dynamic treatment regimes

Dynamic Treatment Regimes

An example of desired regime:

Target tight Alc control on patients with Alc level > 7.5% who
does not have CKD/CHF

Mathematically, the formal rule is

The treatment decision rule at each decision point is the same
function of the time-varying covariate(s), also called shared
decision (Chakraborty et al (2016))

14/ 28



Dynamic treatment regimes

Value Function and Optimal DTR for Multiple Stages

Maximize (minimize) the expected sum of outcomes if the DTR is
followed by all patients in the population.

o The value function: V(d) = EY(Ry + ... + R7).
e Optimal DTR: d* = argmaxg4 V(d).
@ Two main challenges in developing optimal DTRs:

e Taking individual information into account in decision making.

e Incorporating long-term benefits and risks of treatment due to
delayed effects.
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Dynamic treatment regimes

Dynamic Programming

o Estimate d* if one knows the complete probability distribution
of data generation.
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Dynamic treatment regimes

Dynamic Programming

o Estimate d* if one knows the complete probability distribution
of data generation.
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Dynamic treatment regimes

Dynamic Programming

o Estimate d* if one knows the complete probability distribution
of data generation.

OO (D)
1 2 T-1 \

Qr = E(Ry|HT,AT)
Qr-1= Rr_1 +maxy, Qr
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Dynamic treatment regimes

Dynamic Programming

o Estimate d* if one knows the complete probability distribution
of data generation.
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@2 = Ry + max,, @

16/ 28



Dynamic treatment regimes

Dynamic Programming

o Estimate d* if one knows the complete probability distribution
of data generation.

IR

== (e ()

Qr = E(Rr|Hr,AT)
Qr-1= Rr_1 +maxy, Qr
Q2 = Ry + max,, @
Q1 = R + max,, @
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Dynamic treatment regimes

Construct a DTR via Q-learning

@ An extension of regression to sequential treatments.

@ Q learning with regression: estimate the Q-functions from
data using regression and then find the optimal DTR.

@ Decision not shared; rely on the assumption that models are
correct.
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Stabilized Dynamic Treatment Regimes

Stabilized Dynamic Treatment Regimes

@ Learn the optimal DTRs at all stages simultaneously.

o Identify an estimator of V(d), and directly maximize V(d)
over d € D, where D is a prespecified class of DTRs of
interest, e.g., linear DTRs

@ An inverse probability of treatment estimator (IPWE) of V(d)

(> R){A; = di(H;),j =1,..., T}>
[12: P(A; = di(H))IH)) ‘

VIPWE(d) — ]P)n <
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Stabilized Dynamic Treatment Regimes

Stabilized Dynamic Treatment Regimes

o Let di(h:) = I(h] 3 > 0) and find /3 that maximizes
VIPWE(d)_

@ Replace a concave surrogate for the indicator to alleviate the
computation difficulties.

@ P(A¢|H;) can be estimated using e.g., logistic regression

o Apply the LASSO penalty for sparsity.
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Stabilized Dynamic Treatment Regimes

Simulation Studies: Generative Model

@ Baseline covariates Xj 1,..., X150 ~ N(0,1)

Xe1 = Xe—11 + N(0,1),j > 2.

Y ~ 10+ X1 X120 + X3 — Sor_ [2Xe1 — 3[{1(A: >
0) — I(X?; —0.5>0)}? + N(0,1).

Optimal decisions: df(h;) = sign(X¢1 — 0.79)
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Stabilized Dynamic Treatment Regimes

Simulation Studies

Training data sample size 1000.

Testing data sample size 10000.

500 replications.

Evaluate using the values of the estimated DTRs.
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Stabilized Dynamic Treatment Regimes

Simulation Studies

n = 1000
SDTR 8.66
Q learning 5.47

Shared Q learning 7.81
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Other challenges

Medication regimes

@ Large number of combinations of therapies are possible
@ Use pharmacy claims to identify individual medications

@ Group medications into therapeutic classes and identify the
most frequent drug regimens
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Missing data

Other challenges

@ A significant portion of our data set is missing.
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Missing data in A1c measurements over time
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Missing data

Other challenges

@ A significant portion of our data set is missing.

800 1200 1600 2400

400

Missing data in Systolic BP measurements over time
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Other challenges

Missing Data

@ EHR data are collected in a non-prescheduled fashion only
when the patient seeks care or the physician orders care,
creating a situation with intermittent missing data.

@ The visiting process could be potentially informative about
the patients’ risk categories; not missing at random.
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Other challenges

Multiple imputation

@ The missing data are filled in m times to generate m complete
data sets

@ Estimate the optimal stabilized DTR using each complete
data set.

@ Results from the m complete data sets are combined.

e Fully Conditional Specification/Bayesian Mixed Effects
Method to impute (Shortreed et al, 2014)

@ Explore Bayesian multiple imputation approach and pattern
mixture model methods.
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Other challenges

Thanks!
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