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Per Capita Annual Medical Expenditures - OECD Countries

~ $1 trillion
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Smoking Attributable Costs for 60 Million Who
Started Under 21 Years Old, 1954-2000

Disease: LC/COPD 43.7
(millions case-years)

Disease: CHD Group 80.8
(millions case-years)

Dollars 1,087
(billions)

Deaths 128.0
(million years lost) (13m persons)
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How Big is 1 Trillion?

1,000,000,000,000 — a million millions

1 trillion seconds ago was 30,000 BC

$1 trillion, as a stack of $100 bills, is 630 miles
high

$9,000 per household in the U.S.



Table. Estimates of Annual US Health Care Waste, by Category®

$ in Billions

I
Annual Cost to Medicare and Medicaid in 2011P

1
Annual Cost to US Health Care System in 2011

l Low Midpoint High I [ Low Midpoint High !
Faiures of care delivery L = 36 g 45a g 102 - 128 164
Falures of care coordination 21 'S P I m n r m HEI:?_I_O_D_LC EC_I_S_I_O_H S 45
Overtreatment 67 e 7 158 192 226
Administrative complexity 16 36 56 107 248 3
Pricing failures 36 56 77 84 131 178
Fraud and abuse 30 64 98 82 177 272
Total© 197 300 402 558 910 1263

8Table entries represent the range of estimates of waste in each category from sources cited in the text. The total waste estimates are simply the sums of the category-level estimates.
This simple summing is feasible because the categories are defined in such a way that wasteful behaviors could be assigned to at most 1 category and because, like Pacala and
Socolow,” we did not attempt to estimate interactions between or among the categories.

BIncluding both state and federal costs.
€ Totals may not match the sum of components due to rounding.

Figure. Proposed "Wedges" Model for US Health Care, With Theoretical Spending
Reduction Targets for 6 Categories of Waste
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The “wedges" model for US health care follows the approach based on the model by Pacala and Socolow.”
The solid black “business as usual” line depicts a current projection of health care spending, which is estimated
to grow faster than the gross domestic product (GDP), increasing the percentage of GDP spent on health care;
the dashed line depicts a more sustainable level of health care spending growth that matches GDP growth,
fixing the percentage of GDP spent on health care at 2011 levels. Between these lines lies the “stabilization
triangle"—the reduction in national health care expenditures needed to close the gap. The 6 colored regions
filling the triangle show one possible set of spending reduction targets; each region represents health care ex-
penditures as a percentage of GDP that could be eliminated by reduction of spending in that waste category
over time,
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_Eliminating Waste in US Health Care

Donald M. Berwick, MD, MPP
Andrew D. Hackbarth, MPhil

O MATTER HOW POLARIZED
politics in the United States
have become, nearly every-
one agrees that health care
costs are unsustainable. Atalmost 18%
of the gross domestic product (GDP)
in 2011, headed for 20% by 2020,'? the
nation’s increasing health care expen-
ditures reduce the resources available
for other worthy government pro-
grams, erode wages, and undermine the
competitiveness of US industry. Al-
though Medicare and Medicaid are ol-

tenin the limelioht the health rare coct

The need is urgent to bring US health care costs into a sustainable range for
both public and private payers. Commonly, programs to contain costs use
cuts, such as reductions in payment levels, benefit structures, and eligibil-
ity. A less harmful strategy would reduce waste, not value-added care. The
opportunity is immense. In just 6 categories of waste—overtreatment, fail-
ures of care coordination, failures in execution of care processes, adminis-
trative complexity, pricing failures, and fraud and abuse—the sum of the low-
est available estimates exceeds 20% of total health care expenditures. The
actual total may be far greater. The savings potentially achievable from sys-
tematic, comprehensive, and cooperative pursuit of even a fractional reduc-
tion in waste are far higher than from more direct and blunter cuts in care
and coverage. The potential economic dislocations, however, are severe and
require mitigation through careful transition strategies.

JAMA. 2012,307(14):doi: 10.1001/jama.2012.362 Www.jama.com

$.3-4T



Short Review



Learning Healthcare System

s Tin

Practice

()

Knowledge Data

Oct 23, 2018



HealthCare System of Systems Learning
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A Role for Biostatistics: Healthcare Decision Support
PLAY A CLINICIAN (for a moment)

40 year old man, no family history, tests positive for a life-
threatening disease in a routine screen

What is his disease state; what action do you recommend?

Data from prior population of similar people

True disease status

Exam result Yes NoO Total
Positive 15 985 1,000
Negative 5 8,995 9000
Total 20 9,980 10,000

Oct 23, 2018
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Two Goals for Biostatistics

e C(Create the analogue of the 2x2 table for more complex
measurements

Population < Individual

=

e Build capacity to make tables for ever narrower sets of
“otherwise similar” subgroups of individuals

Sllbset, Subset, Subset

Oct 23, 2018
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(b) 10% (c) 50%
(d) 90% (e) 99%
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Bayesian Hierarchical Model for
Health State/Trajectory (n,,) with Person-specific Indicator (9,)

Nit-1

Nit
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Effects of Exogenous (X) and Endogenous (Rx) Covariates on
Health State/Trajectory with Person-specific Regression Coefficients

(By)

Xit—l
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Observations (Y) that Inform about Health State through
Coefficients (¢,)
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Treatment Decisions Depend on Past Measured Outcomes through

Parameters (C))
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Statistical Comments

Can be partially identifiable models that require
external prior information

Hypothesis generating models
Aid in selecting/designing embedded RCTs

Many call these “Causal” or “Structural Equation’
Models when assumptions added

“Predicting Intervention Effects (1) Models”

)



What's New (at JHM)

e inHealth Precision Medicine Centers of Excellence (PMCOEs)
e Precision Medicine Analysis Platform (PMAP)



JHM Precision Medicine Centers of Excellence
2=>8=>30=>ALL

Prostate Cancer

Multiple Sclerosis

Autoimmune Disease (Scleroderma, Myositis,...)
Arrhythmia

Pancreatic Cancer

Bladder Cancer

Obesity/Diabetes - JHHC Populations
Neurofibromatosis

NS Ul kE W=
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Prostate Cancer

Bal Carter, Yates Coley, Ken Pienta, Mufaddal Mamawala,
Scott Zeger, TIC, APL, IT@]JH, JHTV
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PREDICTED OUTCOME

Patient, MRN JH25386645  DOB 06/22/1956 i .

Predicted Prostate Cancer Outcomes

If 100 men with a similar age, diagnosis, and PSA and biopsy history had their prostate surgically removed today, what
cancer grade would be found?

Click on a section of the pie chart to learn about longterm outcomes for
men in each grade group or see outcomes for all 100 men like you.

7 = o If 100 men like you had their prostates surgically removed today, after 5 years...

BEEEEEN

9 ®
Grade Grade Grade Grade
group 1 group 2 group 3 group 4-5

WOULD BE CURED WOULD HAVE PSA RECURRENCE ~ WOULD HAVE METASTIC DISEASE

Oct 23, 2018 27



Steps to Make Healthcare Decisions More Nearly Coherent

Component

Prostate Cancer active surveillance
example

e Frame unmet health need

Half of active surveillance prostatectomies
yield indolent cancers

o Specify biomedical model

Predictors of indolence: PSA, biopsies,
family history, genomic score, MRI

« Wrangle relevant data into a clinical
cohort database (CCDB)

Brady Institute, Bal Carter Active
Surveillance clinical cohort database with
1300 men; recent collection of genomes,
MRIs

« Design and test decision support tool

Coley, et al (a, b): Bayesian hierarchical
model

» Design and test users’ interface for
population health manager, clinician
and/or patient

Technology Innovation Center ($300K)

» Design and test on-going curation

JHM Committee

» Devise business model to sustain/improve | JHM?
tool
» Scale to nation(s) through consortia Partners




Bouillabaisse

Boole —a — Bayes
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Scaling Models Across Clinics

Biomedical, clinical and data scientist partnerships in
each PMCOE

IT infrastructure
— Precision Medicine Analytics Platform (PMAP)

Scalable strategies, policies, and procedures for more
rapid construction of new models

— Precision Medicine Centers of Excellence (PMCOEs) at
JHM

Business model that rewards science-based, value-
producing clinics
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Johns Hopkins Healthcare (JHHC) spends ~$2.5 Billion per year on healthcare
for 500,000 members

~ $1 Billion spent per year produces little improvement in health status

So we build statistical models that support coherent decisions that improve
outcomes, reduce costs | —reinvest a small part of the $1 Billion

Forget JHHC — Think KP

32



Main Points Once Again

e The Stew

— The U.S. can no longer waste $1 Trillion per year on
healthcare (and continue as a liberal democracy)

— Alarge fraction of waste (1/3-1/2) is the result of
uncertainty about health state, trajectory and
risks/benefits of interventions that is exploited by
current perverse incentives

« What's New - Biostatisticians are building models that
reduce uncertainty and improve decisions



Our View — just a small part of the $1 trillion wasted
be reinvested in chanai  American healthcare
system

Move over Jeff: Yates in Back

Oct 23, 2018
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